def create_inverse_reachability(robot, body, table, arm, grasp_type, max_attempts=500, num_samples=500):
    tool_link = get_gripper_link(robot, arm)
    robot_saver = BodySaver(robot)
    gripper_from_base_list = []
    grasps = GET_GRASPS[grasp_type](body)

    start_time = time.time()
    while len(gripper_from_base_list) < num_samples:
        box_pose = sample_placement(body, table)
        set_pose(body, box_pose)
        grasp_pose = random.choice(grasps)
        gripper_pose = multiply(box_pose, invert(grasp_pose))
        for attempt in range(max_attempts):
            robot_saver.restore()
            base_conf = next(uniform_pose_generator(robot, gripper_pose)) #, reachable_range=(0., 1.)))
            #set_base_values(robot, base_conf)
            set_group_conf(robot, 'base', base_conf)
            if pairwise_collision(robot, table):
                continue
            grasp_conf = pr2_inverse_kinematics(robot, arm, gripper_pose) #, nearby_conf=USE_CURRENT)
            #conf = inverse_kinematics(robot, link, gripper_pose)
            if (grasp_conf is None) or pairwise_collision(robot, table):
                continue
            gripper_from_base = multiply(invert(get_link_pose(robot, tool_link)), get_base_pose(robot))
            #wait_if_gui()
            gripper_from_base_list.append(gripper_from_base)
            print('{} / {} | {} attempts | [{:.3f}]'.format(
                len(gripper_from_base_list), num_samples, attempt, elapsed_time(start_time)))
            wait_if_gui()
            break
        else:
            print('Failed to find a kinematic solution after {} attempts'.format(max_attempts))
    return save_inverse_reachability(robot, arm, grasp_type, tool_link, gripper_from_base_list)
Exemple #2
0
def get_grasps(world, name, grasp_types=GRASP_TYPES, pre_distance=APPROACH_DISTANCE, **kwargs):
    use_width = world.robot_name == FRANKA_CARTER
    body = world.get_body(name)
    #fraction = 0.25
    obj_type = type_from_name(name)
    body_pose = REFERENCE_POSE.get(obj_type, unit_pose())
    center, extent = approximate_as_prism(body, body_pose)

    for grasp_type in grasp_types:
        if not implies(world.is_real(), is_valid_grasp_type(name, grasp_type)):
            continue
        #assert is_valid_grasp_type(name, grasp_type)
        if grasp_type == TOP_GRASP:
            grasp_length = 1.5 * FINGER_EXTENT[2]  # fraction = 0.5
            pre_direction = pre_distance * get_unit_vector([0, 0, 1])
            post_direction = unit_point()
            generator = get_top_grasps(body, under=True, tool_pose=TOOL_POSE, body_pose=body_pose,
                                       grasp_length=grasp_length, max_width=np.inf, **kwargs)
        elif grasp_type == SIDE_GRASP:
            # Take max of height and something
            grasp_length = 1.75 * FINGER_EXTENT[2]  # No problem if pushing a little
            x, z = pre_distance * get_unit_vector([3, -1])
            pre_direction = [0, 0, x]
            post_direction = [0, 0, z]
            top_offset = extent[2] / 2 if obj_type in MID_SIDE_GRASPS else 1.0*FINGER_EXTENT[0]
            # Under grasps are actually easier for this robot
            # TODO: bug in under in that it grasps at the bottom
            generator = get_side_grasps(body, under=False, tool_pose=TOOL_POSE, body_pose=body_pose,
                                        grasp_length=grasp_length, top_offset=top_offset, max_width=np.inf, **kwargs)
            # if world.robot_name == FRANKA_CARTER else unit_pose()
            generator = (multiply(Pose(euler=Euler(yaw=yaw)), grasp)
                         for grasp in generator for yaw in [0, np.pi])
        else:
            raise ValueError(grasp_type)
        grasp_poses = randomize(list(generator))
        if obj_type in CYLINDERS:
            # TODO: filter first
            grasp_poses = (multiply(grasp_pose, Pose(euler=Euler(
                yaw=random.uniform(-math.pi, math.pi)))) for grasp_pose in cycle(grasp_poses))
        for i, grasp_pose in enumerate(grasp_poses):
            pregrasp_pose = multiply(Pose(point=pre_direction), grasp_pose,
                                     Pose(point=post_direction))
            grasp = Grasp(world, name, grasp_type, i, grasp_pose, pregrasp_pose)
            with BodySaver(body):
                grasp.get_attachment().assign()
                with BodySaver(world.robot):
                    grasp.grasp_width = close_until_collision(
                        world.robot, world.gripper_joints, bodies=[body])
            #print(get_joint_positions(world.robot, world.arm_joints)[-1])
            #draw_pose(unit_pose(), parent=world.robot, parent_link=world.tool_link)
            #grasp.get_attachment().assign()
            #wait_for_user()
            ##for value in get_joint_limits(world.robot, world.arm_joints[-1]):
            #for value in [-1.8973, 0, +1.8973]:
            #    set_joint_position(world.robot, world.arm_joints[-1], value)
            #    grasp.get_attachment().assign()
            #    wait_for_user()
            if use_width and (grasp.grasp_width is None):
                continue
            yield grasp
def sample_placements(body_surfaces,
                      obstacles=None,
                      savers=[],
                      min_distances={}):
    if obstacles is None:
        obstacles = set(get_bodies()) - set(body_surfaces)
    savers = list(savers) + [BodySaver(obstacle) for obstacle in obstacles]
    if not isinstance(min_distances, dict):
        min_distances = {body: min_distances for body in body_surfaces}
    # TODO: max attempts here
    for body, surface in body_surfaces.items():  # TODO: shuffle
        min_distance = min_distances.get(body, 0.)
        while True:
            pose = sample_placement(body, surface)
            if pose is None:
                for saver in savers:
                    saver.restore()
                return False
            for saver in savers:
                obstacle = saver.body
                if obstacle in [body, surface]:
                    continue
                saver.restore()
                if pairwise_collision(body,
                                      obstacle,
                                      max_distance=min_distance):
                    break
            else:
                savers.append(BodySaver(body))
                break
    for saver in savers:
        saver.restore()
    return True
Exemple #4
0
    def gen_fn(arm, obj_name, pose):
        open_width = get_max_limit(world.robot,
                                   get_gripper_joints(world.robot, arm)[0])
        obj_body = world.bodies[obj_name]

        #grasps = cycle([(grasp,)])
        grasps = cycle(grasp_gen_fn(obj_name))
        for attempt in range(max_attempts):
            try:
                grasp, = next(grasps)
            except StopIteration:
                break
            # TODO: if already successful for a grasp, continue
            set_pose(obj_body, pose)
            set_gripper_position(world.robot, arm, open_width)
            robot_saver = BodySaver(
                world.robot)  # TODO: robot might be at the wrong conf
            body_saver = BodySaver(obj_body)
            pretool_pose = multiply(pose, invert(grasp.pregrasp_pose))
            tool_pose = multiply(pose, invert(grasp.grasp_pose))
            grip_conf = solve_inverse_kinematics(world.robot,
                                                 arm,
                                                 tool_pose,
                                                 obstacles=obstacles)
            if grip_conf is None:
                continue
            #attachment = Attachment(world.robot, tool_link, get_grasp_pose(grasp), world.bodies[obj])
            # Attachments cause table collisions
            post_path = plan_waypoint_motion(
                world.robot,
                arm,
                pretool_pose,
                obstacles=obstacles,
                attachments=[],  #attachments=[attachment],
                self_collisions=collisions,
                disabled_collisions=disabled_collisions)
            if post_path is None:
                continue
            pre_conf = Conf(post_path[-1])
            pre_path = post_path[::-1]
            post_conf = pre_conf
            control = Control({
                'action':
                'pick',
                'objects': [obj_name],
                'context':
                Context(savers=[robot_saver, body_saver], attachments={}),
                'commands': [
                    ArmTrajectory(arm, pre_path, dialation=2.),
                    GripperCommand(arm, grasp.grasp_width,
                                   effort=grasp.effort),
                    Attach(arm, obj_name, effort=grasp.effort),
                    ArmTrajectory(arm, post_path, dialation=2.),
                ],
            })
            yield (grasp, pre_conf, post_conf, control)
Exemple #5
0
def has_grasp(world, name, max_attempts=4):
    with BodySaver(world.get_body(name)):
        try:
            next(get_grasp_gen_fn(world, max_attempts=max_attempts)(name))
        except StopIteration:
            return False
    return True
Exemple #6
0
 def update(self,
            belief,
            observation,
            n_samples=25,
            verbose=False,
            **kwargs):
     if verbose:
         print('Prior:', self.dist)
     body = self.world.get_body(self.name)
     obstacles = [
         self.world.get_body(name) for name in belief.pose_dists
         if name != self.name
     ]
     dists = []
     for _ in range(n_samples):
         belief.sample(discrete=True)  # Trouble if no support
         with BodySaver(body):
             new_dist = self.update_dist(observation, obstacles, **kwargs)
             #new_pose_dist = self.__class__(self.world, self.name, new_dist).resample()
         dists.append(new_dist)
         #remove_all_debug()
         #new_pose_dist.draw(color=belief.color_from_name[self.name])
         #wait_for_user()
     posterior = mixDDists({dist: 1. / len(dists) for dist in dists})
     if verbose:
         print('Posterior:', posterior)
     pose_dist = self.__class__(self.world, self.name, posterior)
     if RESAMPLE:
         pose_dist = pose_dist.resample()
     return pose_dist
Exemple #7
0
def stabilize(world, duration=0.1):
    # TODO: apply to simulated_problems
    with ClientSaver(world.client):
        world.controller.set_gravity()
        with BodySaver(
                world.robot):  # Otherwise the robot starts in self-collision
            world.controller.rest_for_duration(
                duration)  # Let's the objects stabilize
def extract_full_path(robot, path_joints, path, all_joints):
    with BodySaver(robot):
        new_path = []
        for conf in path:
            set_joint_positions(robot, path_joints, conf)
            new_path.append(get_joint_positions(
                robot, all_joints))  # TODO: do without assigning
        return new_path
Exemple #9
0
def bowl_path_collision(bowl_body, body, body_path_bowl):
    bowl_pose = get_pose(bowl_body)
    with BodySaver(body):
        for cup_pose_bowl in body_path_bowl:
            cup_pose_world = multiply(bowl_pose, cup_pose_bowl)
            set_pose(body, cup_pose_world)
            if body_pair_collision(bowl_body, body):  #, collision_buffer=0.0):
                return True
    return False
Exemple #10
0
def fill_with_beads(world, bowl_name, beads, **kwargs):
    with LockRenderer(lock=True):
        with BodySaver(world.robot):
            contained_beads = pour_beads(world, bowl_name, list(beads),
                                         **kwargs)
    print('Contained: {} out of {} beads ({:.3f}%)'.format(
        len(contained_beads), len(beads),
        100 * safe_ratio(len(contained_beads), len(beads), undefined=0)))
    return contained_beads
Exemple #11
0
def compute_grasps(world,
                   name,
                   grasp_length=(HAND_LENGTH - 0.02),
                   pre_distance=0.1,
                   max_attempts=INF):
    body = world.get_body(name)
    reference_pose = get_reference_pose(name)
    # TODO: add z offset in the world frame
    pre_direction = pre_distance * TOP_DIRECTION
    ty = get_type(name)
    if is_obj_type(name, 'block'):
        generator = get_top_grasps(body,
                                   under=False,
                                   tool_pose=TOOL_POSE,
                                   body_pose=reference_pose,
                                   grasp_length=grasp_length,
                                   max_width=np.inf)
    elif is_obj_type(name, 'cup'):
        #pre_direction = pre_distance*get_unit_vector([1, 0, -2]) # -x, -y, -z
        pre_direction = pre_distance * get_unit_vector([3, 0, -1
                                                        ])  # -x, -y, -z
        # Cannot pick if top_offset is too large(0.03 <=)
        top_offset = 3 * FINGER_WIDTH / 4 if ty in CUP_WITH_LIP else FINGER_WIDTH / 4
        generator = get_side_cylinder_grasps(body,
                                             under=False,
                                             tool_pose=TOOL_POSE,
                                             body_pose=reference_pose,
                                             grasp_length=grasp_length,
                                             top_offset=top_offset,
                                             max_width=np.inf)
    elif is_obj_type(name, 'stirrer'):
        generator = get_top_cylinder_grasps(body,
                                            tool_pose=TOOL_POSE,
                                            body_pose=reference_pose,
                                            grasp_length=grasp_length,
                                            max_width=np.inf)
    elif is_obj_type(name, 'bowl'):
        generator = get_edge_cylinder_grasps(body,
                                             tool_pose=TOOL_POSE,
                                             body_pose=reference_pose,
                                             grasp_length=0.02)
    elif is_obj_type(name, 'spoon'):
        generator = get_spoon_grasps(name, body)
    else:
        raise NotImplementedError(name)

    effort = 25 if ty in (OLIVE_CUPS + THREE_D_CUPS) else 50
    for index, grasp_pose in enumerate(
            islice(generator, None if max_attempts is INF else max_attempts)):
        with BodySaver(world.robot):
            grasp_width = compute_grasp_width(world.robot, 'left', body,
                                              grasp_pose)
        #print(index, grasp_width)
        if grasp_width is not None:
            yield Grasp(name, index, grasp_pose, pre_direction, grasp_width,
                        effort)
Exemple #12
0
 def get_link_path(self, link_name=TOOL_LINK):
     link = link_from_name(self.robot, link_name)
     if link not in self.path_from_link:
         with BodySaver(self.robot):
             self.path_from_link[link] = []
             for conf in self.path:
                 set_joint_positions(self.robot, self.joints, conf)
                 self.path_from_link[link].append(
                     get_link_pose(self.robot, link))
     return self.path_from_link[link]
Exemple #13
0
    def gen_fn(arm, bowl_name, bowl_pose, stirrer_name, grasp):
        if bowl_name == stirrer_name:
            return
        bowl_body = world.bodies[bowl_name]
        attachment = get_grasp_attachment(world, arm, grasp)
        feature = get_stir_feature(world, bowl_name, stirrer_name)

        parameter_generator = parameter_fn(world, feature)
        if revisit:
            parameter_generator = cycle(parameter_generator)
        for parameter in parameter_generator:
            for _ in range(max_attempts):
                set_gripper_position(world.robot, arm, grasp.grasp_width)
                set_pose(bowl_body, bowl_pose)
                stirrer_path_bowl = sample_stir_trajectory(
                    world, feature, parameter)
                rotate_bowl = Pose(euler=Euler(
                    yaw=random.uniform(-np.pi, np.pi)))
                stirrer_path = [
                    multiply(bowl_pose, invert(rotate_bowl), cup_pose_bowl)
                    for cup_pose_bowl in stirrer_path_bowl
                ]
                #visualize_cartesian_path(world.get_body(stirrer_name), stirrer_path)
                arm_path = plan_attachment_motion(
                    world.robot,
                    arm,
                    attachment,
                    stirrer_path,
                    obstacles=set(obstacles) - {bowl_body},
                    self_collisions=collisions,
                    disabled_collisions=disabled_collisions,
                    collision_buffer=collision_buffer,
                    attachment_collisions=False)
                if arm_path is None:
                    continue
                pre_conf = Conf(arm_path[0])
                post_conf = Conf(arm_path[-1])
                control = Control({
                    'action':
                    'stir',
                    'objects': [bowl_name, stirrer_name],
                    'feature':
                    feature,
                    'parameter':
                    parameter,
                    'context':
                    Context(
                        savers=[BodySaver(world.robot)
                                ],  # TODO: robot might be at the wrong conf
                        attachments={stirrer_name: attachment}),
                    'commands': [
                        ArmTrajectory(arm, arm_path),
                    ],
                })
                yield (pre_conf, post_conf, control)
Exemple #14
0
 def gen_fn(arm, button):
     gripper_joint = get_gripper_joints(world.robot, arm)[0]
     closed_width, open_width = get_joint_limits(world.robot, gripper_joint)
     pose = world.initial_poses[button]
     body = world.bodies[button]
     presses = cycle(get_top_presses(body, tool_pose=TOOL_POSE))
     for attempt in range(max_attempts):
         try:
             press = next(presses)
         except StopIteration:
             break
         set_gripper_position(world.robot, arm, closed_width)
         tool_pose = multiply(pose, invert(press))
         grip_conf = solve_inverse_kinematics(
             world.robot,
             arm,
             tool_pose,
             obstacles=obstacle_bodies,
             collision_buffer=collision_buffer)
         if grip_conf is None:
             continue
         pretool_pose = multiply(tool_pose, Pose(point=pre_direction))
         post_path = plan_waypoint_motion(
             world.robot,
             arm,
             pretool_pose,
             obstacles=obstacle_bodies,
             collision_buffer=collision_buffer,
             self_collisions=collisions,
             disabled_collisions=disabled_collisions)
         if post_path is None:
             continue
         post_conf = Conf(post_path[-1])
         pre_conf = post_conf
         pre_path = post_path[::-1]
         control = Control({
             'action':
             'press',
             'objects': [],
             'context':
             Context(  # TODO: robot might be at the wrong conf
                 savers=[BodySaver(world.robot)
                         ],  # TODO: start with open instead
                 attachments={}),
             'commands': [
                 GripperCommand(arm, closed_width),
                 ArmTrajectory(arm, pre_path),
                 ArmTrajectory(arm, post_path),
                 GripperCommand(arm, open_width),
             ],
         })
         yield (pre_conf, post_conf, control)
Exemple #15
0
 def get_aabbs(self):
     #traj.aabb = aabb_union(map(get_turtle_traj_aabb, traj.iterate())) # TODO: union
     if self.aabbs is not None:
         return self.aabbs
     self.aabbs = []
     links = get_all_links(self.robot)
     with BodySaver(self.robot):
         for conf in self.path:
             set_joint_positions(self.robot, self.joints, conf)
             self.aabbs.append(
                 {link: get_aabb(self.robot, link)
                  for link in links})
     return self.aabbs
Exemple #16
0
 def fn(bq, *args):  #, aq):
     # TODO: include if holding anything?
     bq.assign()
     aq = world.carry_conf
     #aq.assign() # TODO: could sample aq instead achieve it by move actions
     #world.open_gripper()
     robot_saver = BodySaver(world.robot)
     cmd = Sequence(
         State(world, savers=[robot_saver]),
         commands=[
             #Trajectory(world, world.robot, world.arm_joints, approach_path),
             # TODO: calibrate command
         ],
         name='calibrate')
     return (cmd, )
Exemple #17
0
 def fn(bq, aq1, aq2, fluents=[]):
     #if aq1 == aq2:
     #    return None
     bq.assign()
     aq1.assign()
     attachments, obstacles = parse_fluents(world, fluents)
     obstacles.update(world.static_obstacles)
     if not collisions:
         obstacles = set()
     robot_saver = BodySaver(world.robot)
     if teleport:
         path = [aq1.values, aq2.values]
     else:
         path = plan_joint_motion(
             world.robot,
             aq2.joints,
             aq2.values,
             attachments=attachments,
             obstacles=obstacles,
             self_collisions=SELF_COLLISIONS,
             disabled_collisions=world.disabled_collisions,
             custom_limits=world.custom_limits,
             resolutions=resolutions,
             restarts=2,
             iterations=50,
             smooth=50)
         if path is None:
             print('Failed to find an arm motion plan for {}->{}'.format(
                 aq1, aq2))
             if PAUSE_MOTION_FAILURES:
                 set_renderer(enable=True)
                 print(fluents)
                 for bq in [aq1, aq2]:
                     bq.assign()
                     wait_for_user()
                 set_renderer(enable=False)
             return None
     cmd = Sequence(State(world, savers=[robot_saver]),
                    commands=[
                        Trajectory(world, world.robot, world.arm_joints,
                                   path),
                    ],
                    name='arm')
     return (cmd, )
def problem1(n_obstacles=10, wall_side=0.1, obst_width=0.25, obst_height=0.5):
    floor_extent = 5.0
    base_limits = (-floor_extent/2.*np.ones(2),
                   +floor_extent/2.*np.ones(2))

    floor_height = 0.001
    floor = create_box(floor_extent, floor_extent, floor_height, color=TAN)
    set_point(floor, Point(z=-floor_height/2.))

    wall1 = create_box(floor_extent + wall_side, wall_side, wall_side, color=GREY)
    set_point(wall1, Point(y=floor_extent/2., z=wall_side/2.))
    wall2 = create_box(floor_extent + wall_side, wall_side, wall_side, color=GREY)
    set_point(wall2, Point(y=-floor_extent/2., z=wall_side/2.))
    wall3 = create_box(wall_side, floor_extent + wall_side, wall_side, color=GREY)
    set_point(wall3, Point(x=floor_extent/2., z=wall_side/2.))
    wall4 = create_box(wall_side, floor_extent + wall_side, wall_side, color=GREY)
    set_point(wall4, Point(x=-floor_extent/2., z=wall_side/2.))
    walls = [wall1, wall2, wall3, wall4]

    initial_surfaces = OrderedDict()
    for _ in range(n_obstacles):
        body = create_box(obst_width, obst_width, obst_height, color=GREY)
        initial_surfaces[body] = floor
    obstacles = walls + list(initial_surfaces)

    initial_conf = np.array([+floor_extent/3, -floor_extent/3, 3*PI/4])
    goal_conf = -initial_conf

    with HideOutput():
        robot = load_model(TURTLEBOT_URDF)
        base_joints = joints_from_names(robot, BASE_JOINTS)
        # base_link = child_link_from_joint(base_joints[-1])
        base_link = link_from_name(robot, BASE_LINK_NAME)
        set_all_color(robot, BLUE)
    dump_body(robot)
    set_point(robot, Point(z=stable_z(robot, floor)))
    draw_pose(Pose(), parent=robot, parent_link=base_link, length=0.5)
    set_joint_positions(robot, base_joints, initial_conf)

    sample_placements(initial_surfaces, obstacles=[robot] + walls,
                      savers=[BodySaver(robot, joints=base_joints, positions=goal_conf)],
                      min_distances=10e-2)

    return robot, base_limits, goal_conf, obstacles
Exemple #19
0
 def get_intersecting(self):
     if self.intersecting:
         return self.intersecting
     robot_links = get_all_links(self.robot)
     # TODO: might need call step_simulation
     with BodySaver(self.robot):
         for conf in self.path:
             set_joint_positions(self.robot, self.joints, conf)
             intersecting = {}
             for robot_link in robot_links:
                 for body, _ in get_bodies_in_region(
                         get_aabb(self.robot, link=robot_link)):
                     if body != self.robot:
                         intersecting.setdefault(robot_link,
                                                 set()).add(body)
                 #print(get_bodies_in_region(get_aabb(self.robot, robot_link)))
                 #draw_aabb(get_aabb(self.robot, robot_link))
                 #wait_for_user()
             self.intersecting.append(intersecting)
     return self.intersecting
Exemple #20
0
def create_surface_pose_dist(world, obj_name, surface_dist, n=NUM_PARTICLES):
    # TODO: likely easier to just make a null surface below ground
    placement_gen = get_stable_gen(world,
                                   max_attempts=100,
                                   learned=True,
                                   pos_scale=1e-3,
                                   rot_scale=1e-2)
    poses = []
    with LockRenderer():
        with BodySaver(world.get_body(obj_name)):
            while len(poses) < n:
                surface_name = surface_dist.sample()
                assert surface_name is not ELSEWHERE
                result = next(placement_gen(obj_name, surface_name), None)
                if result is None:
                    surface_dist = surface_dist.condition(
                        lambda s: s != surface_name)
                else:
                    (rel_pose, ) = result
                    rel_pose.init = True
                    poses.append(rel_pose)
    return PoseDist(world, obj_name, UniformDist(poses))
Exemple #21
0
    def gen_fn(arm, obj_name, pose1, region):
        # TODO: reachability test here
        if region is None:
            goals = push_goal_gen_fn(obj_name, pose1, surface)
        elif isinstance(region, str):
            goals = push_goal_gen_fn(obj_name, pose1, surface, region=region)
        else:
            goals = [(region,)]
        if repeat:
            goals = cycle(goals)

        arm_joints = get_arm_joints(world.robot, arm)
        open_width = get_max_limit(world.robot, get_gripper_joints(world.robot, arm)[0])
        body = world.bodies[obj_name]
        for goal_pos2d, in islice(goals, max_samples):
            pose2 = get_end_pose(pose1, goal_pos2d)
            body_path = list(interpolate_poses(pose1, pose2))
            if cartesian_path_collision(body, body_path, set(obstacles) - {surface_body}) or \
                    cartesian_path_unsupported(body, body_path, surface_body):
                continue
            set_pose(body, pose1)
            push_direction = np.array(point_from_pose(pose2)) - np.array(point_from_pose(pose1))
            backoff_tform = Pose(-backoff_distance * get_unit_vector(push_direction))  # World coordinates

            feature = get_push_feature(world, arm, obj_name, pose1, goal_pos2d)
            for parameter in parameter_fn(world, feature):
                push_contact = next(iter(sample_push_contact(world, feature, parameter, under=False)))
                gripper_path = [multiply(pose, invert(multiply(TOOL_POSE, push_contact))) for pose in body_path]
                set_gripper_position(world.robot, arm, open_width)
                for _ in range(max_attempts):
                    start_conf = solve_inverse_kinematics(world.robot, arm, gripper_path[0], obstacles=obstacles)
                    if start_conf is None:
                        continue
                    set_pose(body, pose1)
                    body_saver = BodySaver(body)
                    #attachment = create_attachment(world.robot, arm, body)
                    push_path = plan_waypoint_motion(world.robot, arm, gripper_path[-1],
                                                     obstacles=obstacles, #attachments=[attachment],
                                                     self_collisions=collisions, disabled_collisions=disabled_collisions)
                    if push_path is None:
                        continue
                    pre_backoff_pose = multiply(backoff_tform, gripper_path[0])
                    pre_approach_pose = multiply(pre_backoff_pose, approach_tform)
                    set_joint_positions(world.robot, arm_joints, push_path[0])
                    pre_path = plan_waypoints_motion(world.robot, arm, [pre_backoff_pose, pre_approach_pose],
                                                    obstacles=obstacles, attachments=[],
                                                    self_collisions=collisions, disabled_collisions=disabled_collisions)
                    if pre_path is None:
                        continue
                    pre_path = pre_path[::-1]
                    post_backoff_pose = multiply(backoff_tform, gripper_path[-1])
                    post_approach_pose = multiply(post_backoff_pose, approach_tform)
                    set_joint_positions(world.robot, arm_joints, push_path[-1])
                    post_path = plan_waypoints_motion(world.robot, arm, [post_backoff_pose, post_approach_pose],
                                                     obstacles=obstacles, attachments=[],
                                                     self_collisions=collisions, disabled_collisions=disabled_collisions)
                    if post_path is None:
                        continue
                    pre_conf = Conf(pre_path[0])
                    set_joint_positions(world.robot, arm_joints, pre_conf)
                    robot_saver = BodySaver(world.robot)
                    post_conf = Conf(post_path[-1])
                    control = Control({
                        'action': 'push',
                        'objects': [obj_name],
                        'feature': feature,
                        'parameter': None,
                        'context': Context(
                            savers=[robot_saver, body_saver],
                            attachments={}),
                        'commands': [
                            ArmTrajectory(arm, pre_path),
                            Push(arm, obj_name),
                            ArmTrajectory(arm, push_path),
                            Detach(arm, obj_name),
                            ArmTrajectory(arm, post_path),
                        ],
                    })
                    yield (pose2, pre_conf, post_conf, control)
                    break
Exemple #22
0
    def gen(bowl_name, wp, cup_name, grasp, bq):
        # https://github.mit.edu/Learning-and-Intelligent-Systems/ltamp_pr2/blob/d1e6024c5c13df7edeab3a271b745e656a794b02/plan_tools/samplers/pour.py
        if bowl_name == cup_name:
            return
        #attachment = get_grasp_attachment(world, arm, grasp)
        bowl_body = world.get_body(bowl_name)
        #cup_body = world.get_body(cup_name)
        obstacles = (world.static_obstacles
                     | {bowl_body}) if collisions else set()
        cup_path_bowl = pour_path_from_parameter(world, bowl_name, cup_name)
        while True:
            for _ in range(max_attempts):
                bowl_pose = wp.get_world_from_body()
                rotate_bowl = Pose(euler=Euler(
                    yaw=random.uniform(-np.pi, np.pi)))
                rotate_cup = Pose(euler=Euler(
                    yaw=random.uniform(-np.pi, np.pi)))
                cup_path = [
                    multiply(bowl_pose, invert(rotate_bowl), cup_pose_bowl,
                             rotate_cup) for cup_pose_bowl in cup_path_bowl
                ]
                #visualize_cartesian_path(cup_body, cup_path)
                #if cartesian_path_collision(cup_body, cup_path, obstacles + [bowl_body]):
                #    continue
                tool_path = [
                    multiply(p, invert(grasp.grasp_pose)) for p in cup_path
                ]
                # TODO: extra collision test for visibility
                # TODO: orientation constraint while moving

                bq.assign()
                grasp.set_gripper()
                world.carry_conf.assign()
                arm_path = plan_workspace(world,
                                          tool_path,
                                          obstacles,
                                          randomize=True)  # tilt to upright
                if arm_path is None:
                    continue
                assert MOVE_ARM
                aq = FConf(world.robot, world.arm_joints, arm_path[-1])
                robot_saver = BodySaver(world.robot)

                obj_type = type_from_name(cup_name)
                duration = 5.0 if obj_type in [MUSTARD] else 1.0
                objects = [bowl_name, cup_name]
                cmd = Sequence(State(world, savers=[robot_saver]),
                               commands=[
                                   ApproachTrajectory(objects, world,
                                                      world.robot,
                                                      world.arm_joints,
                                                      arm_path[::-1]),
                                   Wait(world, duration=duration),
                                   ApproachTrajectory(objects, world,
                                                      world.robot,
                                                      world.arm_joints,
                                                      arm_path),
                               ],
                               name='pour')
                yield (
                    aq,
                    cmd,
                )
                break
            else:
                yield None
Exemple #23
0
def plan_pull(world,
              door_joint,
              door_plan,
              base_conf,
              randomize=True,
              collisions=True,
              teleport=False,
              **kwargs):
    door_path, handle_path, handle_plan, tool_path = door_plan
    handle_link, handle_grasp, handle_pregrasp = handle_plan

    door_obstacles = get_descendant_obstacles(
        world.kitchen, door_joint)  # if collisions else set()
    obstacles = (world.static_obstacles | door_obstacles
                 )  # if collisions else set()

    base_conf.assign()
    world.open_gripper()
    world.carry_conf.assign()
    robot_saver = BodySaver(world.robot)  # TODO: door_saver?
    if not is_pull_safe(world, door_joint, door_plan):
        return

    arm_path = plan_workspace(world,
                              tool_path,
                              world.static_obstacles,
                              randomize=randomize,
                              teleport=collisions)
    if arm_path is None:
        return
    approach_paths = []
    for index in [0, -1]:
        set_joint_positions(world.kitchen, [door_joint], door_path[index])
        set_joint_positions(world.robot, world.arm_joints, arm_path[index])
        tool_pose = multiply(handle_path[index], invert(handle_pregrasp))
        approach_path = plan_approach(world,
                                      tool_pose,
                                      obstacles=obstacles,
                                      teleport=teleport,
                                      **kwargs)
        if approach_path is None:
            return
        approach_paths.append(approach_path)

    if MOVE_ARM:
        aq1 = FConf(world.robot, world.arm_joints, approach_paths[0][0])
        aq2 = FConf(world.robot, world.arm_joints, approach_paths[-1][0])
    else:
        aq1 = world.carry_conf
        aq2 = aq1

    set_joint_positions(world.kitchen, [door_joint], door_path[0])
    set_joint_positions(world.robot, world.arm_joints, arm_path[0])
    grasp_width = close_until_collision(world.robot,
                                        world.gripper_joints,
                                        bodies=[(world.kitchen, [handle_link])
                                                ])
    gripper_motion_fn = get_gripper_motion_gen(world,
                                               teleport=teleport,
                                               collisions=collisions,
                                               **kwargs)
    gripper_conf = FConf(world.robot, world.gripper_joints,
                         [grasp_width] * len(world.gripper_joints))
    finger_cmd, = gripper_motion_fn(world.open_gq, gripper_conf)

    objects = []
    commands = [
        ApproachTrajectory(objects, world, world.robot, world.arm_joints,
                           approach_paths[0]),
        DoorTrajectory(world, world.robot, world.arm_joints, arm_path,
                       world.kitchen, [door_joint], door_path),
        ApproachTrajectory(objects, world, world.robot, world.arm_joints,
                           reversed(approach_paths[-1])),
    ]
    door_path, _, _, _ = door_plan
    sign = world.get_door_sign(door_joint)
    pull = (sign * door_path[0][0] < sign * door_path[-1][0])
    if pull:
        commands.insert(1, finger_cmd.commands[0])
        commands.insert(3, finger_cmd.commands[0].reverse())
    cmd = Sequence(State(world, savers=[robot_saver]), commands, name='pull')
    yield (
        aq1,
        aq2,
        cmd,
    )
Exemple #24
0
def plan_pick(world,
              obj_name,
              pose,
              grasp,
              base_conf,
              obstacles,
              randomize=True,
              **kwargs):
    # TODO: check if within database convex hull
    # TODO: flag to check if initially in collision

    obj_body = world.get_body(obj_name)
    pose.assign()
    base_conf.assign()
    world.open_gripper()
    robot_saver = BodySaver(world.robot)
    obj_saver = BodySaver(obj_body)

    if randomize:
        sample_fn = get_sample_fn(world.robot, world.arm_joints)
        set_joint_positions(world.robot, world.arm_joints, sample_fn())
    else:
        world.carry_conf.assign()
    world_from_body = pose.get_world_from_body()
    gripper_pose = multiply(world_from_body, invert(
        grasp.grasp_pose))  # w_f_g = w_f_o * (g_f_o)^-1
    full_grasp_conf = world.solve_inverse_kinematics(gripper_pose)
    if full_grasp_conf is None:
        if PRINT_FAILURES: print('Grasp kinematic failure')
        return
    moving_links = get_moving_links(world.robot, world.arm_joints)
    robot_obstacle = (world.robot, frozenset(moving_links))
    #robot_obstacle = get_descendant_obstacles(world.robot, child_link_from_joint(world.arm_joints[0]))
    #robot_obstacle = world.robot
    if any(pairwise_collision(robot_obstacle, b) for b in obstacles):
        if PRINT_FAILURES: print('Grasp collision failure')
        #set_renderer(enable=True)
        #wait_for_user()
        #set_renderer(enable=False)
        return
    approach_pose = multiply(world_from_body, invert(grasp.pregrasp_pose))
    approach_path = plan_approach(
        world,
        approach_pose,  # attachments=[grasp.get_attachment()],
        obstacles=obstacles,
        **kwargs)
    if approach_path is None:
        if PRINT_FAILURES: print('Approach plan failure')
        return
    if MOVE_ARM:
        aq = FConf(world.robot, world.arm_joints, approach_path[0])
    else:
        aq = world.carry_conf

    gripper_motion_fn = get_gripper_motion_gen(world, **kwargs)
    finger_cmd, = gripper_motion_fn(world.open_gq, grasp.get_gripper_conf())
    attachment = create_surface_attachment(world, obj_name, pose.support)
    objects = [obj_name]
    cmd = Sequence(State(world,
                         savers=[robot_saver, obj_saver],
                         attachments=[attachment]),
                   commands=[
                       ApproachTrajectory(objects, world, world.robot,
                                          world.arm_joints, approach_path),
                       finger_cmd.commands[0],
                       Detach(world, attachment.parent, attachment.parent_link,
                              attachment.child),
                       AttachGripper(world, obj_body, grasp=grasp),
                       ApproachTrajectory(objects, world, world.robot,
                                          world.arm_joints,
                                          reversed(approach_path)),
                   ],
                   name='pick')
    yield (
        aq,
        cmd,
    )
Exemple #25
0
    def gen_fn(arm, bowl_name, bowl_pose, cup_name, grasp):
        if bowl_name == cup_name:
            return
        attachment = get_grasp_attachment(world, arm, grasp)
        bowl_body = world.get_body(bowl_name)
        cup_body = world.get_body(cup_name)
        feature = get_pour_feature(world, bowl_name, cup_name)

        # TODO: this may be called several times with different grasps
        for parameter in parameter_generator(feature):
            for i in range(max_attempts):
                set_pose(bowl_body,
                         bowl_pose)  # Reset because might have changed
                set_gripper_position(world.robot, arm, grasp.grasp_width)
                cup_path_bowl, times_from_start = pour_path_from_parameter(
                    world, feature, parameter)
                rotate_bowl = Pose(euler=Euler(
                    yaw=random.uniform(-np.pi, np.pi)))
                cup_path = [
                    multiply(bowl_pose, invert(rotate_bowl), cup_pose_bowl)
                    for cup_pose_bowl in cup_path_bowl
                ]
                #if world.visualize:
                #    visualize_cartesian_path(cup_body, cup_path)
                if cartesian_path_collision(cup_body, cup_path,
                                            obstacles + [bowl_body]):
                    print('Attempt {}: Pour path collision!'.format(i))
                    continue
                tool_waypoints = [
                    multiply(p, invert(grasp.grasp_pose)) for p in cup_path
                ]
                grip_conf = solve_inverse_kinematics(world.robot,
                                                     arm,
                                                     tool_waypoints[0],
                                                     obstacles=obstacles)
                if grip_conf is None:
                    continue
                if water_robot_collision(world, bowl_body, bowl_pose, cup_body,
                                         cup_path):
                    print('Attempt {}: Water robot collision'.format(i))
                    continue
                if water_obstacle_collision(world, bowl_body, bowl_pose,
                                            cup_body, cup_path):
                    print('Attempt {}: Water obstacle collision'.format(i))
                    continue

                post_path = plan_workspace_motion(
                    world.robot,
                    arm,
                    tool_waypoints,
                    obstacles=obstacles + [bowl_body],
                    attachments=[attachment],
                    self_collisions=collisions,
                    disabled_collisions=disabled_collisions)
                if post_path is None:
                    continue
                pre_conf = Conf(post_path[-1])
                pre_path = post_path[::-1]
                post_conf = pre_conf
                control = Control({
                    'action':
                    'pour',
                    'feature':
                    feature,
                    'parameter':
                    parameter,
                    'objects': [bowl_name, cup_name],
                    'times':
                    times_from_start,
                    'context':
                    Context(
                        savers=[BodySaver(world.robot)
                                ],  # TODO: robot might be at the wrong conf
                        attachments={cup_name: attachment}),
                    'commands': [
                        ArmTrajectory(arm, pre_path, dialation=2.),
                        Rest(duration=2.0),
                        ArmTrajectory(arm, post_path, dialation=2.),
                    ],
                })
                yield (pre_conf, post_conf, control)
                break
            else:
                yield None
Exemple #26
0
    def gen_fn(arm, conf1, conf2, fluents=[]):
        arm_confs, object_grasps, object_poses, contains_liquid = parse_fluents(
            world, fluents)
        for a, q in arm_confs.items():
            #print(a, q) # TODO: some optimistic values are getting through
            set_joint_positions(world.robot, get_arm_joints(world.robot, a), q)
        for name, pose in object_poses.items():
            set_pose(world.bodies[name], pose)
        obstacle_names = list(world.get_fixed()) + list(object_poses)
        obstacles = [world.bodies[name] for name in obstacle_names]

        attachments = {}
        holding_water = None
        water_attachment = None
        for arm2, (obj, grasp) in object_grasps.items():
            set_gripper_position(world.robot, arm, grasp.grasp_width)
            attachment = get_grasp_attachment(world, arm2, grasp)
            attachment.assign()
            if arm == arm2:  # The moving arm
                if obj in contains_liquid:
                    holding_water = obj
                    water_attachment = attachment
                attachments[obj] = attachment
            else:  # The stationary arm
                obstacles.append(world.get_body(obj))
        if not collisions:
            obstacles = []
        # TODO: dynamically adjust step size to be more conservative near longer movements

        arm_joints = get_arm_joints(world.robot, arm)
        set_joint_positions(world.robot, arm_joints, conf1)
        weights, resolutions = get_weights_resolutions(world.robot, arm)
        #print(holding_water, attachments, [get_body_name(body) for body in obstacles])
        if teleport:
            path = [conf1, conf2]
        elif holding_water is None:
            # TODO(caelan): unify these two methods
            path = plan_joint_motion(world.robot,
                                     arm_joints,
                                     conf2,
                                     resolutions=resolutions,
                                     weights=weights,
                                     obstacles=obstacles,
                                     attachments=attachments.values(),
                                     self_collisions=collisions,
                                     disabled_collisions=disabled_collisions,
                                     max_distance=COLLISION_BUFFER,
                                     custom_limits=custom_limits,
                                     restarts=5,
                                     iterations=50,
                                     smooth=smooth)
        else:
            reference_pose = (unit_point(), get_liquid_quat(holding_water))
            path = plan_water_motion(world.robot,
                                     arm_joints,
                                     conf2,
                                     water_attachment,
                                     resolutions=resolutions,
                                     weights=weights,
                                     obstacles=obstacles,
                                     attachments=attachments.values(),
                                     self_collisions=collisions,
                                     disabled_collisions=disabled_collisions,
                                     max_distance=COLLISION_BUFFER,
                                     custom_limits=custom_limits,
                                     reference_pose=reference_pose,
                                     restarts=7,
                                     iterations=75,
                                     smooth=smooth)

        if path is None:
            return None
        control = Control({
            'action':
            'move-arm',
            #'objects': [],
            'context':
            Context(
                savers=[BodySaver(world.robot)
                        ],  # TODO: robot might be at the wrong conf
                attachments=attachments),
            'commands': [
                ArmTrajectory(arm, path),
            ],
        })
        return (control, )
Exemple #27
0
 def gen_fn(arm, bowl_name, bowl_pose, spoon_name, grasp):
     if bowl_name == spoon_name:
         return
     bowl_body = world.get_body(bowl_name)
     attachment = get_grasp_attachment(world, arm, grasp)
     feature = get_scoop_feature(world, bowl_name, spoon_name)
     for parameter in parameter_generator(feature):
         spoon_path_bowl = sample_scoop_trajectory(world,
                                                   feature,
                                                   parameter,
                                                   collisions=collisions)
         if spoon_path_bowl is None:
             continue
         for _ in range(max_attempts):
             set_gripper_position(world.robot, arm, grasp.grasp_width)
             set_pose(bowl_body, bowl_pose)
             rotate_bowl = Pose(euler=Euler(
                 yaw=random.uniform(-np.pi, np.pi)))
             spoon_path = [
                 multiply(bowl_pose, invert(rotate_bowl), spoon_pose_bowl)
                 for spoon_pose_bowl in spoon_path_bowl
             ]
             #visualize_cartesian_path(world.get_body(spoon_name), spoon_path)
             # TODO: pass in tool collision pairs here
             arm_path = plan_attachment_motion(
                 world.robot,
                 arm,
                 attachment,
                 spoon_path,
                 obstacles=set(obstacles) - {bowl_body},
                 self_collisions=collisions,
                 disabled_collisions=disabled_collisions,
                 collision_buffer=collision_buffer,
                 attachment_collisions=False)
             if arm_path is None:
                 continue
             pre_conf = Conf(arm_path[0])
             set_joint_positions(world.robot,
                                 get_arm_joints(world.robot, arm), pre_conf)
             attachment.assign()
             if pairwise_collision(world.robot, bowl_body):
                 # TODO: ensure no robot/bowl collisions for the full path
                 continue
             robot_saver = BodySaver(world.robot)
             post_conf = Conf(arm_path[-1])
             control = Control({
                 'action':
                 'scoop',
                 'objects': [bowl_name, spoon_name],
                 'feature':
                 feature,
                 'parameter':
                 parameter,
                 'context':
                 Context(savers=[robot_saver],
                         attachments={spoon_name: attachment}),
                 'commands': [
                     ArmTrajectory(arm, arm_path, dialation=4.0),
                 ],
             })
             yield (pre_conf, post_conf, control)
             break
         else:
             yield None
Exemple #28
0
def plan_press(world,
               knob_name,
               pose,
               grasp,
               base_conf,
               obstacles,
               randomize=True,
               **kwargs):
    base_conf.assign()
    world.close_gripper()
    robot_saver = BodySaver(world.robot)

    if randomize:
        sample_fn = get_sample_fn(world.robot, world.arm_joints)
        set_joint_positions(world.robot, world.arm_joints, sample_fn())
    else:
        world.carry_conf.assign()
    gripper_pose = multiply(pose, invert(
        grasp.grasp_pose))  # w_f_g = w_f_o * (g_f_o)^-1
    #set_joint_positions(world.gripper, get_movable_joints(world.gripper), world.closed_gq.values)
    #set_tool_pose(world, gripper_pose)
    full_grasp_conf = world.solve_inverse_kinematics(gripper_pose)
    #wait_for_user()
    if full_grasp_conf is None:
        # if PRINT_FAILURES: print('Grasp kinematic failure')
        return
    robot_obstacle = (world.robot,
                      frozenset(get_moving_links(world.robot,
                                                 world.arm_joints)))
    if any(pairwise_collision(robot_obstacle, b) for b in obstacles):
        #if PRINT_FAILURES: print('Grasp collision failure')
        return
    approach_pose = multiply(pose, invert(grasp.pregrasp_pose))
    approach_path = plan_approach(world,
                                  approach_pose,
                                  obstacles=obstacles,
                                  **kwargs)
    if approach_path is None:
        return
    aq = FConf(world.robot, world.arm_joints,
               approach_path[0]) if MOVE_ARM else world.carry_conf

    #gripper_motion_fn = get_gripper_motion_gen(world, **kwargs)
    #finger_cmd, = gripper_motion_fn(world.open_gq, world.closed_gq)
    objects = []
    cmd = Sequence(
        State(world, savers=[robot_saver]),
        commands=[
            #finger_cmd.commands[0],
            ApproachTrajectory(objects, world, world.robot, world.arm_joints,
                               approach_path),
            ApproachTrajectory(objects, world, world.robot, world.arm_joints,
                               reversed(approach_path)),
            #finger_cmd.commands[0].reverse(),
            Wait(world, duration=1.0),
        ],
        name='press')
    yield (
        aq,
        cmd,
    )
Exemple #29
0
    def fn(printed, directed, position, conf):
        # Queue minimizes the statistic
        element = get_undirected(all_elements, directed)
        n1, n2 = directed

        # forward adds, backward removes
        structure = printed | {element} if forward else printed - {element}
        structure_ids = get_extructed_ids(element_from_id, structure)

        normalizer = 1
        #normalizer = len(structure)
        #normalizer = compute_element_distance(node_points, all_elements)

        reduce_op = sum # sum | max | average
        reaction_fn = force_from_reaction  # force_from_reaction | torque_from_reaction

        first_node, second_node = directed if forward else reverse_element(directed)
        layer = sign * layer_from_edge[element]
        #layer = sign * layer_from_directed.get(directed, INF)

        tool_point = position
        tool_distance = 0.
        if heuristic in COST_HEURISTICS:
            if conf is not None:
                if hash_or_id(conf) not in ee_cache:
                    with BodySaver(robot):
                        set_configuration(robot, conf)
                        ee_cache[hash_or_id(conf)] = get_tool_position(robot)
                tool_point = ee_cache[hash_or_id(conf)]
            tool_distance = get_distance(tool_point, node_points[first_node])

        # TODO: weighted average to balance cost and bias
        if heuristic == 'none':
            return 0
        if heuristic == 'random':
            return random.random()
        elif heuristic == 'degree':
            # TODO: other graph statistics
            #printed_nodes = {n for e in printed for n in e}
            #node = n1 if n2 in printed_nodes else n2
            #if node in ground_nodes:
            #    return 0
            raise NotImplementedError()
        elif heuristic == 'length':
            # Equivalent to mass if uniform density
            return get_element_length(element, node_points)
        elif heuristic == 'distance':
            return tool_distance
        elif heuristic == 'layered-distance':
            return (layer, tool_distance)
        # elif heuristic == 'components':
        #     # Ground nodes intentionally omitted
        #     # TODO: this is broken
        #     remaining = all_elements - printed if forward else printed - {element}
        #     vertices = nodes_from_elements(remaining)
        #     components = get_connected_components(vertices, remaining)
        #     #print('Components: {} | Distance: {:.3f}'.format(len(components), tool_distance))
        #     return (len(components), tool_distance)
        elif heuristic == 'fixed-tsp':
            # TODO: layer_from_edge[element]
            # TODO: score based on current distance from the plan in the tour
            # TODO: factor in the distance to the next element in a more effective way
            if order is None:
                return (INF, tool_distance)
            return (sign*order[element], tool_distance) # Chooses least expensive direction
        elif heuristic == 'tsp':
            if printed not in tsp_cache: # not last_plan and
                # TODO: seed with the previous solution
                #remaining = all_elements - printed if forward else printed
                #assert element in remaining
                #printed_nodes = compute_printed_nodes(ground_nodes, printed) if forward else ground_nodes
                tsp_cache[printed] = solve_tsp(all_elements, ground_nodes, node_points, printed, tool_point, initial_point,
                                               bidirectional=True, layers=True, max_time=30, visualize=False, verbose=True)
                #print(tsp_cache[printed])
                if not last_plan:
                    last_plan[:] = tsp_cache[printed][0]
            plan, cost = tsp_cache[printed]
            #plan = last_plan[len(printed):]
            if plan is None:
                #return tool_distance
                return (layer, INF)
            transit = compute_transit_distance(node_points, plan, start=tool_point, end=initial_point)
            assert forward
            first = plan[0] == directed
            #return not first # No info if the best isn't possible
            index = None
            for i, directed2 in enumerate(plan):
                undirected2 = get_undirected(all_elements, directed2)
                if element == undirected2:
                    assert index is None
                    index = i
            assert index is not None
            # Could also break ties by other in the plan
            # Two plans might have the same cost but the swap might be detrimental
            new_plan = [directed] + plan[:index] + plan[index+1:]
            assert len(plan) == len(new_plan)
            new_transit = compute_transit_distance(node_points, new_plan, start=tool_point, end=initial_point)
            #print(layer, cost, transit + compute_element_distance(node_points, plan),
            #      new_transit + compute_element_distance(node_points, plan))
            #return new_transit
            return (layer, not first, new_transit) # Layer important otherwise it shortcuts
        elif heuristic == 'online-tsp':
            if forward:
                _, tsp_distance = solve_tsp(all_elements-structure, ground_nodes, node_points, printed,
                                            node_points[second_node], initial_point, visualize=False)
            else:
                _, tsp_distance = solve_tsp(structure, ground_nodes, node_points, printed, initial_point,
                                            node_points[second_node], visualize=False)
            total = tool_distance + tsp_distance
            return total
        # elif heuristic == 'mst':
        #     # TODO: this is broken
        #     mst_distance = compute_component_mst(node_points, ground_nodes, remaining,
        #                                          initial_position=node_points[second_node])
        #     return tool_distance + mst_distance
        elif heuristic == 'x':
            return sign * get_midpoint(node_points, element)[0]
        elif heuristic == 'z':
            return sign * compute_z_distance(node_points, element)
        elif heuristic == 'pitch':
            #delta = node_points[second_node] - node_points[first_node]
            delta = node_points[n2] - node_points[n1]
            return get_pitch(delta)
        elif heuristic == 'dijkstra': # offline
            # TODO: sum of all element path distances
            return sign*np.average([distance_from_node[node].cost for node in element]) # min, max, average
        elif heuristic == 'online-dijkstra':
            if printed not in distance_cache:
                distance_cache[printed] = compute_distance_from_node(printed, node_points, ground_nodes)
            return sign*min(distance_cache[printed][node].cost
                            if node in distance_cache[printed] else INF
                            for node in element)
        elif heuristic == 'plan-stiffness':
            if order is None:
                return None
            return (sign*order[element], directed not in order)
        elif heuristic == 'load':
            nodal_loads = checker.get_nodal_loads(existing_ids=structure_ids, dof_flattened=False) # get_self_weight_loads
            return reduce_op(np.linalg.norm(force_from_reaction(reaction)) for reaction in nodal_loads.values())
        elif heuristic == 'fixed-forces':
            #printed = all_elements # disable to use most up-to-date
            # TODO: relative to the load introduced
            if printed not in reaction_cache:
                reaction_cache[printed] = compute_all_reactions(extrusion_path, all_elements, checker=checker)
            force = reduce_op(np.linalg.norm(reaction_fn(reaction)) for reaction in reaction_cache[printed].reactions[element])
            return force / normalizer
        elif heuristic == 'forces':
            reactions_from_nodes = compute_node_reactions(extrusion_path, structure, checker=checker)
            #torque = sum(np.linalg.norm(np.sum([torque_from_reaction(reaction) for reaction in reactions], axis=0))
            #            for reactions in reactions_from_nodes.values())
            #return torque / normalizer
            total = reduce_op(np.linalg.norm(reaction_fn(reaction)) for reactions in reactions_from_nodes.values()
                            for reaction in reactions)
            return total / normalizer
            #return max(sum(np.linalg.norm(reaction_fn(reaction)) for reaction in reactions)
            #               for reactions in reactions_from_nodes.values())
        elif heuristic == 'stiffness':
            # TODO: add different variations
            # TODO: normalize by initial stiffness, length, or degree
            # Most unstable or least unstable first
            # Gets faster with fewer all_elements
            #old_stiffness = score_stiffness(extrusion_path, element_from_id, printed, checker=checker)
            stiffness = score_stiffness(extrusion_path, element_from_id, structure, checker=checker) # lower is better
            return stiffness / normalizer
            #return stiffness / old_stiffness
        elif heuristic == 'fixed-stiffness':
            # TODO: invert the sign for regression/progression?
            # TODO: sort FastDownward by the (fixed) action cost
            return stiffness_cache[element] / normalizer
        elif heuristic == 'relative-stiffness':
            stiffness = score_stiffness(extrusion_path, element_from_id, structure, checker=checker) # lower is better
            if normalizer == 0:
                return 0
            return stiffness / normalizer
            #return stiffness / stiffness_cache[element]
        raise ValueError(heuristic)
def problem1(n_obstacles=10, wall_side=0.1, obst_width=0.25, obst_height=0.5):
    floor_extent = 5.0
    base_limits = (-floor_extent / 2. * np.ones(2),
                   +floor_extent / 2. * np.ones(2))

    floor_height = 0.001
    floor = create_box(floor_extent, floor_extent, floor_height, color=TAN)
    set_point(floor, Point(z=-floor_height / 2.))

    wall1 = create_box(floor_extent + wall_side,
                       wall_side,
                       wall_side,
                       color=GREY)
    set_point(wall1, Point(y=floor_extent / 2., z=wall_side / 2.))
    wall2 = create_box(floor_extent + wall_side,
                       wall_side,
                       wall_side,
                       color=GREY)
    set_point(wall2, Point(y=-floor_extent / 2., z=wall_side / 2.))
    wall3 = create_box(wall_side,
                       floor_extent + wall_side,
                       wall_side,
                       color=GREY)
    set_point(wall3, Point(x=floor_extent / 2., z=wall_side / 2.))
    wall4 = create_box(wall_side,
                       floor_extent + wall_side,
                       wall_side,
                       color=GREY)
    set_point(wall4, Point(x=-floor_extent / 2., z=wall_side / 2.))
    wall5 = create_box(obst_width, obst_width, obst_height, color=GREY)
    set_point(wall5, Point(z=obst_height / 2.))
    walls = [wall1, wall2, wall3, wall4, wall5]

    initial_surfaces = OrderedDict()
    for _ in range(n_obstacles - 1):
        body = create_box(obst_width, obst_width, obst_height, color=GREY)
        initial_surfaces[body] = floor
    pillars = list(initial_surfaces)
    obstacles = walls + pillars

    initial_conf = np.array([+floor_extent / 3, -floor_extent / 3, 3 * PI / 4])
    goal_conf = -initial_conf

    robot = load_pybullet(TURTLEBOT_URDF,
                          fixed_base=True,
                          merge=True,
                          sat=False)
    base_joints = joints_from_names(robot, BASE_JOINTS)
    # base_link = child_link_from_joint(base_joints[-1])
    base_link = link_from_name(robot, BASE_LINK_NAME)
    set_all_color(robot, BLUE)
    dump_body(robot)
    set_point(robot, Point(z=stable_z(robot, floor)))
    #set_point(robot, Point(z=base_aligned_z(robot)))
    draw_pose(Pose(), parent=robot, parent_link=base_link, length=0.5)
    set_joint_positions(robot, base_joints, initial_conf)

    sample_placements(
        initial_surfaces,
        obstacles=[robot] + walls,
        savers=[BodySaver(robot, joints=base_joints, positions=goal_conf)],
        min_distances=10e-2)

    # The first calls appear to be the slowest
    # times = []
    # for body1, body2 in combinations(pillars, r=2):
    #     start_time = time.time()
    #     colliding = pairwise_collision(body1, body2)
    #     runtime = elapsed_time(start_time)
    #     print(colliding, runtime)
    #     times.append(runtime)
    # print(times)

    return robot, base_limits, goal_conf, obstacles