Exemple #1
0
def generate_params(source,
                    batches,
                    run,
                    mc_source,
                    mc_version,
                    free_params=('m_gr', 'd_b', 'xi_ratio')):
    """"""
    synth_grid = grid_analyser.Kgrid(source, use_sub_cols=True)
    mv = mcmc_versions.McmcVersion(mc_source, version=mc_version)

    n_epochs = len(batches)
    pkeys = mv.param_keys
    params = dict.fromkeys(pkeys)

    # ===== Pull model params from kepler grid =====
    for key in mv.interp_keys:
        key = mv.param_aliases.get(key, key)
        if key in mv.epoch_unique:
            for i in range(n_epochs):
                grid_params = synth_grid.get_params(batches[i], run)
                e_key = f'{key}{i+1}'

                grid_key = {'mdot': 'accrate'}.get(key, key)
                params[e_key] = float(grid_params[grid_key])
        else:
            grid_key = {'m_nw': 'mass'}.get(key, key)
            grid_params = synth_grid.get_params(batches[0], run)
            params[key] = float(grid_params[grid_key])

    # ===== Randomly generate free params =====
    for key in free_params:
        params[key] = mcmc_tools.get_random_params(key, n_models=1, mv=mv)[0]

    return params
Exemple #2
0
def setup_table(kgrid, batches, synth_source, mc_source, mc_version, synth_version,
                params=('x', 'z', 'accrate', 'qb', 'mass'),
                summ_list=('rate', 'dt', 'fluence', 'peak'),
                free_params=('redshift', 'd_b', 'xi_ratio'),
                observables=('rate', 'peak', 'fluence', 'fper'),
                update=False):
    """Sets up table of synthetic data, including input/output values

    parameters
    ----------
    kgrid : Kgrid object
    batches : list
        list of batches, each corresponding to an epoch. Assumes the runs in each
        batch correspond to each other.
    synth_source : str
    mc_source : str
    mc_version : int
    synth_version : int
    params : sequence(str)
        parameters to extract from kgrid and add to the table
    summ_list : sequence(str)
        burst properties to extract from kgrid and add to the table
    free_params : sequence(str)
        free parameters to randomly choose
    observables : sequence(str)
        names of observables to calculate from burst properties
    update : bool
        whether to simply update an existing synth table,
        e.g. if the models just need updating. Keeps the previously randomised params
    """
    mcv = mcmc_versions.McmcVersion(source=mc_source, version=mc_version)
    sub = grid_tools.reduce_table(kgrid.params, params={'batch': batches[0]})
    groups = np.array(sub['run'])

    table = pd.DataFrame()

    # ===== For each group of epochs, setup sub-table of inputs/outputs =====
    for group in groups:
        group_table = initialise_group_table(group, batches)

        set_param_cols(group_table, batches=batches, kgrid=kgrid, params=params)
        set_summ_cols(group_table, batches=batches, kgrid=kgrid, summ_list=summ_list)

        if update:
            inherit_free_params(group_table, free_params=free_params, parent_group=group,
                                parent_source=synth_source, parent_version=synth_version)
        else:
            set_rand_free_params(group_table, mcv=mcv, free_params=free_params)

        set_observables(group_table, observables=observables)

        table = pd.concat([table, group_table], ignore_index=True)

    save_table(table, source=synth_source, version=synth_version)
    return table
Exemple #3
0
def setup_mcmc_sample(batch0, source, chain, n_models, n_epochs, ref_source,
                      ref_mcmc_version, kgrid, constant=None,
                      epoch_independent=('x', 'z', 'mass'),
                      epoch_dependent=('accrate', 'qb'), discard=200, cap=None):
    """Creates batches of models, with random sample of params drawn from MCMC chain
    """
    ref_mass = 1.4
    aliases = {'mass': 'g', 'accrate': 'mdot'}
    if constant is None:
        constant = {'tshift': 0.0, 'acc_mult': 1.0, 'qnuc': 5.0, 'qb_delay': 0.0,
                    'accmass': 1e16, 'accdepth': 1e19}

    mv = mcmc_versions.McmcVersion(source=ref_source, version=ref_mcmc_version)
    params_full = {}
    param_sample, idxs = mcmc_tools.get_random_sample(chain, n=n_models,
                                                      discard=discard, cap=cap)
    batch1 = batch0 + n_epochs - 1
    save_sample_array(param_sample, source=source, batch0=batch0, batch1=batch1)
    idx_string = get_index_str(idxs, discard=discard, cap=cap)

    # ===== fill model params =====
    for key in epoch_independent:
        mv_key = aliases.get(key, key)
        params_full[key] = get_mcmc_params(mv_key, param_sample=param_sample, mv=mv)

    # ===== fill constant params =====
    for key, val in constant.items():
        params_full[key] = np.full(n_models, val)

    params_full['mass'] *= ref_mass

    for i in range(n_epochs):
        for key in epoch_dependent:
            mv_key = aliases.get(key, key)
            mv_key = f'{mv_key}{i+1}'
            params_full[key] = get_mcmc_params(mv_key, param_sample=param_sample, mv=mv)

        create_batch(batch0+i, dv={}, params={}, source=source, nbursts=30, kgrid=kgrid,
                     qos='normal', walltime=96, setup_test=False, nsdump=500,
                     nuc_heat=True, predict_qnuc=False, grid_version=0,
                     substrate_off=True, ibdatov=1, params_full=params_full,
                     notes=idx_string)
Exemple #4
0
def random_models(batch0, source, n_models, n_epochs, ref_source, kgrid, ref_mcmc_version,
                  constant=None, epoch_independent=('x', 'z', 'mass'),
                  epoch_dependent=('accrate', 'qb'), epoch_chosen=None):
    """Creates random sample of model parameters
    """
    ref_mass = 1.4
    aliases = {'mass': 'g', 'accrate': 'mdot'}
    if constant is None:
        constant = {'tshift': 0.0, 'acc_mult': 1.0, 'qnuc': 5.0, 'qb_delay': 0.0,
                    'accmass': 1e16, 'accdepth': 1e19}
    if epoch_chosen is None:
        epoch_chosen = {}

    mv = mcmc_versions.McmcVersion(source=ref_source, version=ref_mcmc_version)
    params_full = {}

    # ===== fill model params =====
    for key in epoch_independent:
        mv_key = aliases.get(key, key)
        params_full[key] = mcmc_tools.get_random_params(mv_key, n_models=n_models, mv=mv)

    # ===== fill constant params =====
    for key, val in constant.items():
        params_full[key] = np.full(n_models, val)

    params_full['mass'] *= ref_mass

    for i in range(n_epochs):
        for key in epoch_dependent:
            if key in epoch_chosen:
                val = epoch_chosen[key][i]
                params_full[key] = np.full(n_models, val)
            else:
                mv_key = aliases.get(key, key)
                mv_key = f'{mv_key}{i+1}'
                params_full[key] = mcmc_tools.get_random_params(mv_key,
                                                                n_models=n_models, mv=mv)

        create_batch(batch0+i, dv={}, params={}, source=source, nbursts=30, kgrid=kgrid,
                     qos='normal', walltime=96, setup_test=False, nsdump=500,
                     nuc_heat=True, predict_qnuc=False, grid_version=0,
                     substrate_off=True, ibdatov=1, params_full=params_full)
Exemple #5
0
def plot_truth(plot_type,
               source,
               mc_version,
               discard,
               chain=None,
               n_walkers=None,
               n_steps=None,
               save=False,
               display=True):
    """Plots results of MCMC against true values of synthetic data
    """
    mcv = mcmc_versions.McmcVersion(source, mc_version)
    chain = check_chain(chain,
                        n_walkers=n_walkers,
                        n_steps=n_steps,
                        source=source,
                        version=mc_version)
    truth = synth.get_true_values(source,
                                  version=mcv.synth_version,
                                  group=mcv.synth_group)

    if plot_type == 'posteriors':
        mcmc_plot.plot_posteriors(chain,
                                  source=source,
                                  version=mc_version,
                                  discard=discard,
                                  truth_values=truth,
                                  save=save,
                                  display=display)
    elif plot_type == 'contours':
        mcmc_plot.plot_contours(chain,
                                discard=discard,
                                source=source,
                                truth=True,
                                version=mc_version,
                                truth_values=truth,
                                save=save,
                                display=display)
    else:
        raise ValueError('plot_type must be one of: (posteriors, corner)')
Exemple #6
0
def setup_synth_table(source,
                      batches,
                      run,
                      mc_source,
                      mc_version,
                      free_params=('m_gr', 'd_b', 'xi_ratio'),
                      params=None,
                      u_fedd_frac=0.08,
                      u_fper_frac=0.01):
    """"""
    if params is None:
        params = generate_params(source,
                                 batches=batches,
                                 run=run,
                                 mc_source=mc_source,
                                 mc_version=mc_version,
                                 free_params=free_params)

    bfit = burstfit.BurstFit(mc_source,
                             version=mc_version,
                             debug=False,
                             u_fper_frac=u_fper_frac,
                             u_fedd_frac=u_fedd_frac)
    mv = mcmc_versions.McmcVersion(mc_source, version=mc_version)

    bprops = bfit.bprop_sample(x=None, params=params)
    table = pd.DataFrame()
    pd.set_option("display.precision", 5)
    for i, key in enumerate(mv.bprops):
        bp_i = 2 * i
        u_i = bp_i + 1
        u_key = f'u_{key}'

        table[key] = bprops[:, bp_i]
        table[u_key] = bprops[:, u_i]

    return table
Exemple #7
0
def setup_mcmc_sample(batch0,
                      sample_source,
                      chain,
                      discard,
                      n_models_epoch,
                      n_epochs,
                      ref_source,
                      ref_mcmc_version,
                      kgrid,
                      nbursts,
                      constant=None,
                      epoch_independent=('x', 'z', 'mass'),
                      walltime=96,
                      epoch_dependent=('accrate', 'qb'),
                      cap=None,
                      scratch_file_sys=False):
    """Creates batches of models, with random sample of params drawn from MCMC chain
    """
    aliases = {'mass': 'm_nw', 'accrate': 'mdot'}
    # TODO: - use config defaults for constants
    #       - account for different variable params (he2, grid5 with x,z)
    if constant is None:
        # TODO: hack fix for he2/grid5 different params
        if ref_source == 'he2':
            constant = {
                'tshift': 0.0,
                'acc_mult': 1.0,
                'qnuc': 5.0,
                'qb_delay': 0.0,
                'accmass': 1e16,
                'accdepth': 1e20,
                'x': 0.0,
                'z': 0.015,
                'mass': 1.4
            }
        elif ref_source == 'grid5':
            constant = {
                'tshift': 0.0,
                'acc_mult': 1.0,
                'qnuc': 5.0,
                'qb_delay': 0.0,
                'accmass': 1e16,
                'accdepth': 1e20
            }

    mv = mcmc_versions.McmcVersion(source=ref_source, version=ref_mcmc_version)
    params_full = {}
    param_sample, idxs = mcmc_tools.get_random_sample(chain,
                                                      n=n_models_epoch,
                                                      discard=discard,
                                                      cap=cap)
    batch1 = batch0 + n_epochs - 1
    save_sample_array(param_sample,
                      source=sample_source,
                      batch0=batch0,
                      batch1=batch1)
    idx_string = get_index_str(idxs, discard=discard, cap=cap)

    # ===== fill model params =====
    for key in epoch_independent:
        mv_key = aliases.get(key, key)
        params_full[key] = get_mcmc_params(mv_key,
                                           param_sample=param_sample,
                                           mv=mv)

    # ===== fill constant params =====
    for key, val in constant.items():
        params_full[key] = np.full(n_models_epoch, val)

    for i in range(n_epochs):
        for key in epoch_dependent:
            mv_key = aliases.get(key, key)
            mv_key = f'{mv_key}{i+1}'
            params_full[key] = get_mcmc_params(mv_key,
                                               param_sample=param_sample,
                                               mv=mv)

        create_batch(batch0 + i,
                     dv={},
                     params={},
                     source=sample_source,
                     nbursts=nbursts,
                     kgrid=kgrid,
                     walltime=walltime,
                     setup_test=False,
                     nuc_heat=True,
                     auto_qnuc=False,
                     substrate_off=True,
                     params_full=params_full,
                     notes=idx_string,
                     scratch_file_sys=scratch_file_sys)