Exemple #1
0
def equilibrium_(phase_records: Dict[str, PhaseRecord],
                 conditions: Dict[v.StateVariable, np.ndarray], grid: LightDataset
                 ) -> LightDataset:
    """
    Perform a fast equilibrium calculation with virtually no overhead.
    """
    statevars = sorted(get_state_variables(conds=conditions), key=str)
    conditions = _adjust_conditions(conditions)
    str_conds = OrderedDict([(str(ky), conditions[ky]) for ky in sorted(conditions.keys(), key=str)])
    start_point = starting_point(conditions, statevars, phase_records, grid)
    return _solve_eq_at_conditions(start_point, phase_records, grid, str_conds, statevars, False)
Exemple #2
0
def constrained_equilibrium(phase_records: Dict[str, PhaseRecord],
                 conditions: Dict[v.StateVariable, np.ndarray], grid: LightDataset):
    """Perform an equilibrium calculation with just a single composition set that is constrained to the global composition condition"""
    statevars = get_state_variables(conds=conditions)
    conditions = _adjust_conditions(conditions)
    # Assume that all conditions keys are lists with exactly one element (point calculation)
    str_conds = OrderedDict([(str(ky), conditions[ky][0]) for ky in sorted(conditions.keys(), key=str)])
    compset = _single_phase_start_point(conditions, statevars, phase_records, grid)
    # modifies `compset` in place
    solver_result = solve_and_update([compset], str_conds, Solver())
    energy = compset.NP * compset.energy
    return solver_result.converged, energy
Exemple #3
0
def no_op_equilibrium_(phase_records: Dict[str, PhaseRecord],
                       conditions: Dict[v.StateVariable, np.ndarray],
                       grid: LightDataset,
                       ) -> LightDataset:
    """
    Perform a fast "equilibrium" calculation with virtually no overhead that
    doesn't refine the solution or do global minimization, but just returns
    the starting point.

    Notes
    -----
    Uses a placeholder first argument for the same signature as
    ``_equilibrium``, but ``species`` are not needed.

    """
    statevars = get_state_variables(conds=conditions)
    conditions = _adjust_conditions(conditions)
    return starting_point(conditions, statevars, phase_records, grid)
Exemple #4
0
def map_binary(
    dbf,
    comps,
    phases,
    conds,
    eq_kwargs=None,
    calc_kwargs=None,
    boundary_sets=None,
    verbose=False,
    summary=False,
):
    """
    Map a binary T-X phase diagram

    Parameters
    ----------
    dbf : Database
    comps : list of str
    phases : list of str
        List of phases to consider in mapping
    conds : dict
        Dictionary of conditions
    eq_kwargs : dict
        Dictionary of keyword arguments to pass to equilibrium
    verbose : bool
        Print verbose output for mapping
    boundary_sets : ZPFBoundarySets
        Existing ZPFBoundarySets

    Returns
    -------
    ZPFBoundarySets

    Notes
    -----
    Assumes conditions in T and X.

    Simple algorithm to map a binary phase diagram in T-X. More or less follows
    the algorithm described in Figure 2 by Snider et al. [1] with the small
    algorithmic improvement of constructing a convex hull to find the next
    potential two phase region.

    For each temperature, proceed along increasing composition, skipping two
    over two phase regions, once calculated.
    [1] J. Snider, I. Griva, X. Sun, M. Emelianenko, Set based framework for
        Gibbs energy minimization, Calphad. 48 (2015) 18-26.
        doi: 10.1016/j.calphad.2014.09.005

    """

    eq_kwargs = eq_kwargs or {}
    calc_kwargs = calc_kwargs or {}
    # implicitly add v.N to conditions
    if v.N not in conds:
        conds[v.N] = [1.0]
    if 'pdens' not in calc_kwargs:
        calc_kwargs['pdens'] = 2000

    species = unpack_components(dbf, comps)
    phases = filter_phases(dbf, species, phases)
    parameters = eq_kwargs.get('parameters', {})
    models = eq_kwargs.get('model')
    statevars = get_state_variables(models=models, conds=conds)
    if models is None:
        models = instantiate_models(dbf,
                                    comps,
                                    phases,
                                    model=eq_kwargs.get('model'),
                                    parameters=parameters,
                                    symbols_only=True)
    prxs = build_phase_records(dbf,
                               species,
                               phases,
                               conds,
                               models,
                               output='GM',
                               parameters=parameters,
                               build_gradients=True,
                               build_hessians=True)

    indep_comp = [
        key for key, value in conds.items()
        if isinstance(key, v.MoleFraction) and len(np.atleast_1d(value)) > 1
    ]
    indep_pot = [
        key for key, value in conds.items()
        if (type(key) is v.StateVariable) and len(np.atleast_1d(value)) > 1
    ]
    if (len(indep_comp) != 1) or (len(indep_pot) != 1):
        raise ValueError(
            'Binary map requires exactly one composition and one potential coordinate'
        )
    if indep_pot[0] != v.T:
        raise ValueError(
            'Binary map requires that a temperature grid must be defined')

    # binary assumption, only one composition specified.
    comp_cond = [k for k in conds.keys() if isinstance(k, v.X)][0]
    indep_comp = comp_cond.name[2:]
    indep_comp_idx = sorted(get_pure_elements(dbf, comps)).index(indep_comp)
    composition_grid = unpack_condition(conds[comp_cond])
    dX = composition_grid[1] - composition_grid[0]
    Xmax = composition_grid.max()
    temperature_grid = unpack_condition(conds[v.T])
    dT = temperature_grid[1] - temperature_grid[0]

    boundary_sets = boundary_sets or ZPFBoundarySets(comps, comp_cond)

    equilibria_calculated = 0
    equilibrium_time = 0
    convex_hulls_calculated = 0
    convex_hull_time = 0
    curr_conds = {key: unpack_condition(val) for key, val in conds.items()}
    str_conds = sorted([str(k) for k in curr_conds.keys()])
    grid_conds = _adjust_conditions(curr_conds)
    for T_idx in range(temperature_grid.size):
        T = temperature_grid[T_idx]
        iter_equilibria = 0
        if verbose:
            print("=== T = {} ===".format(float(T)))
        curr_conds[v.T] = [float(T)]
        eq_conds = deepcopy(curr_conds)
        Xmax_visited = 0.0
        hull_time = time.time()
        grid = calculate(dbf,
                         comps,
                         phases,
                         fake_points=True,
                         output='GM',
                         T=T,
                         P=grid_conds[v.P],
                         N=1,
                         model=models,
                         parameters=parameters,
                         to_xarray=False,
                         **calc_kwargs)
        hull = starting_point(eq_conds, statevars, prxs, grid)
        convex_hull_time += time.time() - hull_time
        convex_hulls_calculated += 1
        while Xmax_visited < Xmax:
            hull_compsets = find_two_phase_region_compsets(
                hull,
                T,
                indep_comp,
                indep_comp_idx,
                minimum_composition=Xmax_visited,
                misc_gap_tol=2 * dX)
            if hull_compsets is None:
                if verbose:
                    print(
                        "== Convex hull: max visited = {} - no multiphase phase compsets found =="
                        .format(Xmax_visited, hull_compsets))
                break
            Xeq = hull_compsets.mean_composition
            eq_conds[comp_cond] = [float(Xeq)]
            eq_time = time.time()
            start_point = starting_point(eq_conds, statevars, prxs, grid)
            eq_ds = _solve_eq_at_conditions(species, start_point, prxs, grid,
                                            str_conds, statevars, False)
            equilibrium_time += time.time() - eq_time
            equilibria_calculated += 1
            iter_equilibria += 1
            # composition sets in the plane of the calculation:
            # even for isopleths, this should always be two.
            compsets = get_compsets(eq_ds, indep_comp, indep_comp_idx)
            if verbose:
                print(
                    "== Convex hull: max visited = {:0.4f} - hull compsets: {} equilibrium compsets: {} =="
                    .format(Xmax_visited, hull_compsets, compsets))
            if compsets is None:
                # equilibrium calculation, didn't find a valid multiphase composition set
                # we need to find the next feasible one from the convex hull.
                Xmax_visited += dX
                continue
            else:
                boundary_sets.add_compsets(compsets, Xtol=0.10, Ttol=2 * dT)
                if compsets.max_composition > Xmax_visited:
                    Xmax_visited = compsets.max_composition
            # this seems kind of sloppy, but captures the effect that we want to
            # keep doing equilibrium calculations, if possible.
            while Xmax_visited < Xmax and compsets is not None:
                eq_conds[comp_cond] = [float(Xmax_visited + dX)]
                eq_time = time.time()
                # TODO: starting point could be improved by basing it off the previous calculation
                start_point = starting_point(eq_conds, statevars, prxs, grid)
                eq_ds = _solve_eq_at_conditions(species, start_point, prxs,
                                                grid, str_conds, statevars,
                                                False)
                equilibrium_time += time.time() - eq_time
                equilibria_calculated += 1
                compsets = get_compsets(eq_ds, indep_comp, indep_comp_idx)
                if compsets is not None:
                    Xmax_visited = compsets.max_composition
                    boundary_sets.add_compsets(compsets,
                                               Xtol=0.10,
                                               Ttol=2 * dT)
                else:
                    Xmax_visited += dX
                if verbose:
                    print("Equilibrium: at X = {:0.4f}, found compsets {}".
                          format(Xmax_visited, compsets))
        if verbose:
            print(iter_equilibria, 'equilibria calculated in this iteration.')
    if verbose or summary:
        print("{} Convex hulls calculated ({:0.1f}s)".format(
            convex_hulls_calculated, convex_hull_time))
        print("{} Equilbria calculated ({:0.1f}s)".format(
            equilibria_calculated, equilibrium_time))
        print("{:0.0f}% of brute force calculations skipped".format(
            100 * (1 - equilibria_calculated /
                   (composition_grid.size * temperature_grid.size))))
    return boundary_sets