Exemple #1
0
 def test_injection_presence(self):
     """Verify presence of signals at expected times"""
     injections = InjectionSet(self.inj_file.name)
     for det in self.detectors:
         for inj in self.injections:
             ts = TimeSeries(numpy.zeros(int(10 * self.sample_rate)),
                             delta_t=1 / self.sample_rate,
                             epoch=lal.LIGOTimeGPS(inj.end_time - 5),
                             dtype=numpy.float64)
             injections.apply(ts, det.name)
             max_amp, max_loc = ts.abs_max_loc()
             # FIXME could test amplitude and time more precisely
             self.assertTrue(max_amp > 0 and max_amp < 1e-10)
             time_error = ts.sample_times.numpy()[max_loc] - inj.end_time
             self.assertTrue(abs(time_error) < 2 * self.earth_time)
Exemple #2
0
 def test_injection_presence(self):
     """Verify presence of signals at expected times"""
     injections = InjectionSet(self.inj_file.name)
     for det in self.detectors:
         for inj in self.injections:
             ts = TimeSeries(numpy.zeros(10 * self.sample_rate),
                             delta_t=1/self.sample_rate,
                             epoch=lal.LIGOTimeGPS(inj.end_time - 5),
                             dtype=numpy.float64)
             injections.apply(ts, det.name)
             max_amp, max_loc = ts.abs_max_loc()
             # FIXME could test amplitude and time more precisely
             self.assertTrue(max_amp > 0 and max_amp < 1e-10)
             time_error = ts.sample_times.numpy()[max_loc] - inj.end_time
             self.assertTrue(abs(time_error) < 1.5 * self.earth_time)
Exemple #3
0
 def test_injection_absence(self):
     """Verify absence of signals outside known injection times"""
     clear_times = [
         self.injections[0].end_time - 86400,
         self.injections[-1].end_time + 86400
     ]
     injections = InjectionSet(self.inj_file.name)
     for det in self.detectors:
         for epoch in clear_times:
             ts = TimeSeries(numpy.zeros(int(10 * self.sample_rate)),
                             delta_t=1 / self.sample_rate,
                             epoch=lal.LIGOTimeGPS(epoch),
                             dtype=numpy.float64)
             injections.apply(ts, det.name)
             max_amp, max_loc = ts.abs_max_loc()
             self.assertEqual(max_amp, 0)
Exemple #4
0
    def read_injections(self, group=None):
        """Gets injection parameters.

        Injections are retrieved from ``[{group}/]injections``.

        Parameters
        ----------
        group : str, optional
            Group that the injections group is in. Default (None) is to look
            in the top-level.

        Returns
        -------
        FieldArray
            Array of the injection parameters.
        """
        if group is None or group == '/':
            group = self.injections_group
        else:
            group = '/'.join([group, self.injections_group])
        injset = InjectionSet(self.filename, hdf_group=group)
        injections = injset.table.view(FieldArray)
        # close the new open filehandler to self
        injset._injhandler.filehandler.close()
        return injections
Exemple #5
0
 def test_injection_absence(self):
     """Verify absence of signals outside known injection times"""
     clear_times = [
         self.injections[0].end_time - 86400,
         self.injections[-1].end_time + 86400
     ]
     injections = InjectionSet(self.inj_file.name)
     for det in self.detectors:
         for epoch in clear_times:
             ts = TimeSeries(numpy.zeros(10 * self.sample_rate),
                             delta_t=1/self.sample_rate,
                             epoch=lal.LIGOTimeGPS(epoch),
                             dtype=numpy.float64)
             injections.apply(ts, det.name)
             max_amp, max_loc = ts.abs_max_loc()
             self.assertEqual(max_amp, 0)
Exemple #6
0
    def read_injections(self):
        """Gets injection parameters.

        Returns
        -------
        FieldArray
            Array of the injection parameters.
        """
        injset = InjectionSet(self.filename, hdf_group=self.injections_group)
        injections = injset.table.view(FieldArray)
        # close the new open filehandler to self
        injset._injhandler.filehandler.close()
        return injections
Exemple #7
0
def get_static_params_from_injection(static_params, injection_file):
    """Gets FROM_INJECTION static params from injection.

    Parameters
    ----------
    static_params : dict
        Dictionary of static params.
    injection_file : str
        Name of the injection file to use.

    Returns
    -------
    dict :
        A dictionary mapping parameter names to values retrieved from the
        injection file. The dictionary will only contain parameters that were
        set to ``"FROM_INJECTION"`` in the ``static_params``.
        Parameter names -> values The injection parameters.
    """
    # pull out the parameters that need replacing
    replace_params = {p: None for (p, val) in static_params.items()
                      if val == 'FROM_INJECTION'}
    if replace_params != {}:
        # make sure there's actually an injection file
        if injection_file is None:
            raise ValueError("one or more static params are set to "
                             "FROM_INJECTION, but no injection file "
                             "provided in data section")
        inj = InjectionSet(injection_file)
        # make sure there's only one injection provided
        if inj.table.size > 1:
            raise ValueError("Some static params set to FROM_INJECTION, but "
                             "more than one injection exists in the injection "
                             "file.")
        for param in replace_params:
            try:
                injval = inj.table[param][0]
            except NameError:
                # means the parameter doesn't exist
                raise ValueError("Static param {} with placeholder "
                                 "FROM_INJECTION has no counterpart in "
                                 "injection file.".format(param))
            replace_params[param] = injval
    return replace_params
Exemple #8
0
def get_values_from_injection(cp, injection_file, update_cp=True):
    """Replaces all FROM_INJECTION values in a config file with the
    corresponding value from the injection.

    This looks for any options that start with ``FROM_INJECTION[:ARG]`` in
    a config file. It then replaces that value with the corresponding value
    from the injection file. An argument may be optionally provided, in which
    case the argument will be retrieved from the injection file. Functions of
    parameters in the injection file may be used; the syntax and functions
    available is the same as the ``--parameters`` argument in executables
    such as ``pycbc_inference_extract_samples``. If no ``ARG`` is provided,
    then the option name will try to be retrieved from the injection.

    For example,

    .. code-block:: ini

       mass1 = FROM_INJECTION

    will cause ``mass1`` to be retrieved from the injection file, while:

    .. code-black:: ini

       mass1 = FROM_INJECTION:'primary_mass(mass1, mass2)'

    will cause the larger of mass1 and mass2 to be retrieved from the injection
    file. Note that if spaces are in the argument, it must be encased in
    single quotes.

    The injection file may contain only one injection. Otherwise, a ValueError
    will be raised.

    Parameters
    ----------
    cp : ConfigParser
        The config file within which to replace values.
    injection_file : str or None
        The injection file to get values from. A ValueError will be raised
        if there are any ``FROM_INJECTION`` values in the config file, and
        injection file is None, or if there is more than one injection.
    update_cp : bool, optional
        Update the config parser with the replaced parameters. If False,
        will just retrieve the parameter values to update, without updating
        the config file. Default is True.

    Returns
    -------
    list
        The parameters that were replaced, as a tuple of section name, option,
        value.
    """
    lookfor = 'FROM_INJECTION'
    # figure out what parameters need to be set
    replace_params = []
    for sec in cp.sections():
        for opt in cp.options(sec):
            val = cp.get(sec, opt)
            splitvals = shlex.split(val)
            replace_this = []
            for ii, subval in enumerate(splitvals):
                if subval.startswith(lookfor):
                    # determine what we should retrieve from the injection
                    subval = subval.split(':', 1)
                    if len(subval) == 1:
                        subval = opt
                    else:
                        subval = subval[1]
                    replace_this.append((ii, subval))
            if replace_this:
                replace_params.append((sec, opt, splitvals, replace_this))
    if replace_params:
        # check that we have an injection file
        if injection_file is None:
            raise ValueError("One or values are set to {}, but no injection "
                             "file provided".format(lookfor))
        # load the injection file
        inj = InjectionSet(injection_file).table.view(type=FieldArray)
        # make sure there's only one injection provided
        if inj.size > 1:
            raise ValueError("One or more values are set to {}, but more than "
                             "one injection exists in the injection file."
                             .format(lookfor))
    # get the injection values to replace
    for ii, (sec, opt, splitvals, replace_this) in enumerate(replace_params):
        # replace the value in the shlex-splitted string with the value
        # from the injection
        for jj, arg in replace_this:
            splitvals[jj] = str(inj[arg][0])
        # now rejoin the string...
        # shlex will strip quotes around arguments; this can be problematic
        # when rejoining if the the argument had a space in it. In python 3.8
        # there is a shlex.join function which properly rejoins things taking
        # that into account. Since we need to continue to support earlier
        # versions of python, the following kludge tries to account for that.
        # If/when we drop support for all earlier versions of python, then the
        # following can just be replaced by:
        # replace_val = shlex.join(splitvals)
        for jj, arg in enumerate(splitvals):
            if ' ' in arg:
                arg = "'" + arg + "'"
                splitvals[jj] = arg
        replace_val = ' '.join(splitvals)
        replace_params[ii] = (sec, opt, replace_val)
    # replace in the config file
    if update_cp:
        for (sec, opt, replace_val) in replace_params:
            cp.set(sec, opt, replace_val)
    return replace_params
Exemple #9
0
def from_cli(opt, dyn_range_fac=1, precision='single'):
    """Parses the CLI options related to strain data reading and conditioning.

    Parameters
    ----------
    opt : object
        Result of parsing the CLI with OptionParser, or any object with the
        required attributes  (gps-start-time, gps-end-time, strain-high-pass, 
        pad-data, sample-rate, (frame-cache or frame-files), channel-name, 
        fake-strain, fake-strain-seed, gating_file).

    dyn_range_fac: {float, 1}, optional
        A large constant to reduce the dynamic range of the strain.

    Returns
    -------
    strain : TimeSeries
        The time series containing the conditioned strain data.
    """

    gating_info = {}

    if opt.frame_cache or opt.frame_files or opt.frame_type:
        if opt.frame_cache:
            frame_source = opt.frame_cache
        if opt.frame_files:
            frame_source = opt.frame_files

        logging.info("Reading Frames")
        
        if opt.frame_type:
            strain = query_and_read_frame(opt.frame_type, opt.channel_name,
                                          start_time=opt.gps_start_time-opt.pad_data,
                                          end_time=opt.gps_end_time+opt.pad_data)
        else:
            strain = read_frame(frame_source, opt.channel_name,
                            start_time=opt.gps_start_time-opt.pad_data,
                            end_time=opt.gps_end_time+opt.pad_data)

        if opt.zpk_z and opt.zpk_p and opt.zpk_k:
            logging.info("Highpass Filtering")
            strain = highpass(strain, frequency=opt.strain_high_pass)

            logging.info("Applying zpk filter")
            z = numpy.array(opt.zpk_z)
            p = numpy.array(opt.zpk_p)
            k = float(opt.zpk_k)
            strain = filter_zpk(strain.astype(numpy.float64), z, p, k)

        if opt.normalize_strain:
            logging.info("Dividing strain by constant")
            l = opt.normalize_strain
            strain = strain / l

        if opt.injection_file:
            logging.info("Applying injections")
            injections = InjectionSet(opt.injection_file)
            injections.apply(strain, opt.channel_name[0:2],
                             distance_scale=opt.injection_scale_factor)

        if opt.sgburst_injection_file:
            logging.info("Applying sine-Gaussian burst injections")
            injections = SGBurstInjectionSet(opt.sgburst_injection_file)
            injections.apply(strain, opt.channel_name[0:2],
                             distance_scale=opt.injection_scale_factor)

        logging.info("Highpass Filtering")
        strain = highpass(strain, frequency=opt.strain_high_pass)

        if precision == 'single':
            logging.info("Converting to float32")
            strain = (strain * dyn_range_fac).astype(pycbc.types.float32)

        if opt.gating_file is not None:
            logging.info("Gating glitches")
            gate_params = numpy.loadtxt(opt.gating_file)
            if len(gate_params.shape) == 1:
                gate_params = [gate_params]
            strain = gate_data(strain, gate_params)
            gating_info['file'] = \
                    [gp for gp in gate_params \
                     if (gp[0] + gp[1] + gp[2] >= strain.start_time) \
                     and (gp[0] - gp[1] - gp[2] <= strain.end_time)]

        if opt.autogating_threshold is not None:
            # the + 0 is for making a copy
            glitch_times = detect_loud_glitches(
                    strain + 0., threshold=opt.autogating_threshold,
                    cluster_window=opt.autogating_cluster,
                    low_freq_cutoff=opt.strain_high_pass,
                    high_freq_cutoff=opt.sample_rate/2,
                    corrupt_time=opt.pad_data+opt.autogating_pad)
            gate_params = [[gt, opt.autogating_width, opt.autogating_taper] \
                           for gt in glitch_times]
            if len(glitch_times) > 0:
                logging.info('Autogating at %s',
                             ', '.join(['%.3f' % gt for gt in glitch_times]))
            strain = gate_data(strain, gate_params)
            gating_info['auto'] = gate_params

        logging.info("Resampling data")
        strain = resample_to_delta_t(strain, 1.0/opt.sample_rate, method='ldas')

        logging.info("Highpass Filtering")
        strain = highpass(strain, frequency=opt.strain_high_pass)

        logging.info("Remove Padding")
        start = opt.pad_data*opt.sample_rate
        end = len(strain)-opt.sample_rate*opt.pad_data
        strain = strain[start:end]

    if opt.fake_strain:
        logging.info("Generating Fake Strain")
        duration = opt.gps_end_time - opt.gps_start_time
        tlen = duration * opt.sample_rate
        pdf = 1.0/128
        plen = int(opt.sample_rate / pdf) / 2 + 1

        logging.info("Making PSD for strain")
        strain_psd = pycbc.psd.from_string(opt.fake_strain, plen, pdf,
                                           opt.low_frequency_cutoff)

        logging.info("Making colored noise")
        strain = pycbc.noise.noise_from_psd(tlen, 1.0/opt.sample_rate,
                                            strain_psd,
                                            seed=opt.fake_strain_seed)
        strain._epoch = lal.LIGOTimeGPS(opt.gps_start_time)

        if opt.injection_file:
            logging.info("Applying injections")
            injections = InjectionSet(opt.injection_file)
            injections.apply(strain, opt.channel_name[0:2],
                             distance_scale=opt.injection_scale_factor)

        if opt.sgburst_injection_file:
            logging.info("Applying sine-Gaussian burst injections")
            injections = SGBurstInjectionSet(opt.sgburst_injection_file)
            injections.apply(strain, opt.channel_name[0:2],
                             distance_scale=opt.injection_scale_factor)

        if precision == 'single':
            logging.info("Converting to float32")
            strain = (dyn_range_fac * strain).astype(pycbc.types.float32)

    if opt.injection_file or opt.sgburst_injection_file:
        strain.injections = injections

    if opt.taper_data:
        logging.info("Tapering data")
        # Use auto-gating stuff for this, a one-sided gate is a taper
        pd_taper_window = opt.taper_data
        gate_params = [(strain.start_time, 0., pd_taper_window)]
        gate_params.append( (strain.end_time, 0.,
                             pd_taper_window) )
        gate_data(strain, gate_params)


    strain.gating_info = gating_info

    return strain
Exemple #10
0
def from_cli(opt, dyn_range_fac=1, precision='single'):
    """Parses the CLI options related to strain data reading and conditioning.

    Parameters
    ----------
    opt : object
        Result of parsing the CLI with OptionParser, or any object with the
        required attributes  (gps-start-time, gps-end-time, strain-high-pass, 
        pad-data, sample-rate, (frame-cache or frame-files), channel-name, 
        fake-strain, fake-strain-seed, gating_file).

    dyn_range_fac: {float, 1}, optional
        A large constant to reduce the dynamic range of the strain.

    Returns
    -------
    strain : TimeSeries
        The time series containing the conditioned strain data.
    """
    if opt.frame_cache or opt.frame_files:
        if opt.frame_cache:
            frame_source = opt.frame_cache
        if opt.frame_files:
            frame_source = opt.frame_files

        logging.info("Reading Frames")
        strain = read_frame(frame_source, opt.channel_name,
                            start_time=opt.gps_start_time-opt.pad_data,
                            end_time=opt.gps_end_time+opt.pad_data)

        if opt.zpk_z and opt.zpk_p and opt.zpk_k:
            logging.info("Highpass Filtering")
            strain = highpass(strain, frequency=opt.strain_high_pass)

            logging.info("Applying zpk filter")
            z = numpy.array(opt.zpk_z)
            p = numpy.array(opt.zpk_p)
            k = float(opt.zpk_k)
            strain = filter_zpk(strain.astype(numpy.float64), z, p, k)

        if opt.normalize_strain:
            logging.info("Dividing strain by constant")
            l = opt.normalize_strain
            strain = strain / l

        if opt.injection_file:
            logging.info("Applying injections")
            injections = InjectionSet(opt.injection_file)
            injections.apply(strain, opt.channel_name[0:2])

        if opt.sgburst_injection_file:
            logging.info("Applying sine-Gaussian burst injections")
            injections = SGBurstInjectionSet(opt.sgburst_injection_file)
            injections.apply(strain, opt.channel_name[0:2])

        logging.info("Highpass Filtering")
        strain = highpass(strain, frequency=opt.strain_high_pass)

        if precision == 'single':
            logging.info("Converting to float32")
            strain = (strain * dyn_range_fac).astype(float32)

        if opt.gating_file is not None:
            logging.info("Gating glitches")
            gate_params = numpy.loadtxt(opt.gating_file)
            if len(gate_params.shape) == 1:
                gate_params = [gate_params]
            strain = gate_data(
                strain, gate_params,
                data_start_time=(opt.gps_start_time - opt.pad_data))

        logging.info("Resampling data")
        strain = resample_to_delta_t(strain, 1.0/opt.sample_rate, method='ldas')

        logging.info("Highpass Filtering")
        strain = highpass(strain, frequency=opt.strain_high_pass)

        logging.info("Remove Padding")
        start = opt.pad_data*opt.sample_rate
        end = len(strain)-opt.sample_rate*opt.pad_data
        strain = strain[start:end]

    if opt.fake_strain:
        logging.info("Generating Fake Strain")
        duration = opt.gps_end_time - opt.gps_start_time
        tlen = duration * opt.sample_rate
        pdf = 1.0/128
        plen = int(opt.sample_rate / pdf) / 2 + 1

        logging.info("Making PSD for strain")
        strain_psd = psd.from_string(opt.fake_strain, plen,
                                     pdf, opt.low_frequency_cutoff)

        logging.info("Making colored noise")
        strain = pycbc.noise.noise_from_psd(tlen, 1.0/opt.sample_rate,
                                            strain_psd,
                                            seed=opt.fake_strain_seed)
        strain._epoch = lal.LIGOTimeGPS(opt.gps_start_time)

        if opt.injection_file:
            logging.info("Applying injections")
            injections = InjectionSet(opt.injection_file)
            injections.apply(strain, opt.channel_name[0:2])

        if opt.sgburst_injection_file:
            logging.info("Applying sine-Gaussian burst injections")
            injections = SGBurstInjectionSet(opt.sgburst_injection_file)
            injections.apply(strain, opt.channel_name[0:2])

        if precision == 'single':
            logging.info("Converting to float32")
            strain = (dyn_range_fac * strain).astype(float32)

    if opt.injection_file:
        strain.injections = injections

    return strain
Exemple #11
0
def from_cli(opt, dyn_range_fac=1, precision='single'):
    """Parses the CLI options related to strain data reading and conditioning.

    Parameters
    ----------
    opt : object
        Result of parsing the CLI with OptionParser, or any object with the
        required attributes  (gps-start-time, gps-end-time, strain-high-pass, 
        pad-data, sample-rate, (frame-cache or frame-files), channel-name, 
        fake-strain, fake-strain-seed, gating_file).

    dyn_range_fac: {float, 1}, optional
        A large constant to reduce the dynamic range of the strain.

    Returns
    -------
    strain : TimeSeries
        The time series containing the conditioned strain data.
    """

    gating_info = {}

    if opt.frame_cache or opt.frame_files or opt.frame_type:
        if opt.frame_cache:
            frame_source = opt.frame_cache
        if opt.frame_files:
            frame_source = opt.frame_files

        logging.info("Reading Frames")
        
        if opt.frame_type:
            strain = query_and_read_frame(opt.frame_type, opt.channel_name,
                                          start_time=opt.gps_start_time-opt.pad_data,
                                          end_time=opt.gps_end_time+opt.pad_data)
        else:
            strain = read_frame(frame_source, opt.channel_name,
                            start_time=opt.gps_start_time-opt.pad_data,
                            end_time=opt.gps_end_time+opt.pad_data)

        if opt.zpk_z and opt.zpk_p and opt.zpk_k:
            logging.info("Highpass Filtering")
            strain = highpass(strain, frequency=opt.strain_high_pass)

            logging.info("Applying zpk filter")
            z = numpy.array(opt.zpk_z)
            p = numpy.array(opt.zpk_p)
            k = float(opt.zpk_k)
            strain = filter_zpk(strain.astype(numpy.float64), z, p, k)

        if opt.normalize_strain:
            logging.info("Dividing strain by constant")
            l = opt.normalize_strain
            strain = strain / l

        if opt.injection_file:
            logging.info("Applying injections")
            injections = InjectionSet(opt.injection_file)
            injections.apply(strain, opt.channel_name[0:2],
                             distance_scale=opt.injection_scale_factor)

        if opt.sgburst_injection_file:
            logging.info("Applying sine-Gaussian burst injections")
            injections = SGBurstInjectionSet(opt.sgburst_injection_file)
            injections.apply(strain, opt.channel_name[0:2],
                             distance_scale=opt.injection_scale_factor)

        logging.info("Highpass Filtering")
        strain = highpass(strain, frequency=opt.strain_high_pass)

        if precision == 'single':
            logging.info("Converting to float32")
            strain = (strain * dyn_range_fac).astype(float32)

        if opt.gating_file is not None:
            logging.info("Gating glitches")
            gate_params = numpy.loadtxt(opt.gating_file)
            if len(gate_params.shape) == 1:
                gate_params = [gate_params]
            strain = gate_data(strain, gate_params)
            gating_info['file'] = \
                    [gp for gp in gate_params \
                     if (gp[0] + gp[1] + gp[2] >= strain.start_time) \
                     and (gp[0] - gp[1] - gp[2] <= strain.end_time)]

        if opt.autogating_threshold is not None:
            # the + 0 is for making a copy
            glitch_times = detect_loud_glitches(
                    strain + 0., threshold=opt.autogating_threshold,
                    cluster_window=opt.autogating_cluster,
                    low_freq_cutoff=opt.strain_high_pass,
                    high_freq_cutoff=opt.sample_rate/2,
                    corrupted_time=opt.pad_data+opt.autogating_pad)
            gate_params = [[gt, opt.autogating_width, opt.autogating_taper] \
                           for gt in glitch_times]
            if len(glitch_times) > 0:
                logging.info('Autogating at %s',
                             ', '.join(['%.3f' % gt for gt in glitch_times]))
            strain = gate_data(strain, gate_params)
            gating_info['auto'] = gate_params

        logging.info("Resampling data")
        strain = resample_to_delta_t(strain, 1.0/opt.sample_rate, method='ldas')

        logging.info("Highpass Filtering")
        strain = highpass(strain, frequency=opt.strain_high_pass)

        logging.info("Remove Padding")
        start = opt.pad_data*opt.sample_rate
        end = len(strain)-opt.sample_rate*opt.pad_data
        strain = strain[start:end]

    if opt.fake_strain:
        logging.info("Generating Fake Strain")
        duration = opt.gps_end_time - opt.gps_start_time
        tlen = duration * opt.sample_rate
        pdf = 1.0/128
        plen = int(opt.sample_rate / pdf) / 2 + 1

        logging.info("Making PSD for strain")
        strain_psd = pycbc.psd.from_string(opt.fake_strain, plen, pdf,
                                           opt.low_frequency_cutoff)

        logging.info("Making colored noise")
        strain = pycbc.noise.noise_from_psd(tlen, 1.0/opt.sample_rate,
                                            strain_psd,
                                            seed=opt.fake_strain_seed)
        strain._epoch = lal.LIGOTimeGPS(opt.gps_start_time)

        if opt.injection_file:
            logging.info("Applying injections")
            injections = InjectionSet(opt.injection_file)
            injections.apply(strain, opt.channel_name[0:2],
                             distance_scale=opt.injection_scale_factor)

        if opt.sgburst_injection_file:
            logging.info("Applying sine-Gaussian burst injections")
            injections = SGBurstInjectionSet(opt.sgburst_injection_file)
            injections.apply(strain, opt.channel_name[0:2],
                             distance_scale=opt.injection_scale_factor)

        if precision == 'single':
            logging.info("Converting to float32")
            strain = (dyn_range_fac * strain).astype(float32)

    if opt.injection_file or opt.sgburst_injection_file:
        strain.injections = injections

    strain.gating_info = gating_info

    return strain
Exemple #12
0
         ('tc', float), ('distance', float),
         ('ra', float), ('dec', float),
         ('approximant', 'S32')]

static_params = {'f_lower': 17.,
                 'f_ref': 17.,
                 'taper': 'start',
                 'inclination': 0.,
                 'coa_phase': 0.,
                 'polarization': 0.}

samples = FieldArray(2, dtype=dtype)

# masses and spins are intended to match the highest
# and lowest mass templates in the template bank
samples['mass1'] = [290.929321, 1.1331687]
samples['mass2'] = [3.6755455, 1.010624]
samples['spin1z'] = [0.9934847, 0.029544285]
samples['spin2z'] = [0.92713535, 0.020993788]

# distance and sky locations to have network SNRs ~15
samples['tc'] = [1272790100.1, 1272790260.1]
samples['distance'] = [178., 79.]
samples['ra'] = [np.deg2rad(45), np.deg2rad(10)]
samples['dec'] = [np.deg2rad(45), np.deg2rad(-45)]

samples['approximant'] = ['SEOBNRv4_opt', 'SpinTaylorT4']

InjectionSet.write('injections.hdf', samples, static_args=static_params,
                   injtype='cbc', cmd=" ".join(sys.argv))
Exemple #13
0
row.amp_order = 0
row.coa_phase = 0
row.bandpass = 0
row.taper = inj.taper
row.numrel_mode_min = 0
row.numrel_mode_max = 0
row.numrel_data = None
row.source = 'ANTANI'
row.process_id = 'process:process_id:0'
row.simulation_id = 'sim_inspiral:simulation_id:0'

sim_table.append(row)

inj_file = open("injection.xml","w+")
ligolw_utils.write_fileobj(xmldoc, inj_file)

injection_set = InjectionSet("injection.xml")

sample_rate = 4096 # Hz
for det in [Detector(d) for d in ['H1', 'L1', 'V1']]:
         ts = TimeSeries(numpy.zeros(int(10 * sample_rate)),
                                 delta_t=1/sample_rate,
                                 epoch=lal.LIGOTimeGPS(end_time - 5),
                                 dtype=numpy.float64)

         injection_set.apply(ts, det.name)
         max_amp, max_loc = ts.abs_max_loc()
         pylab.plot(ts,label=det.name)

pylab.legend()