Exemple #1
0
def gate_overwhitened_data(stilde_dict, psd_dict, gates):
    """Applies gates to overwhitened data.

    Parameters
    ----------
    stilde_dict : dict
        Dictionary of detectors -> frequency series data to apply the gates to.
    psd_dict : dict
        Dictionary of detectors -> PSD to use for overwhitening.
    gates : dict
        Dictionary of detectors -> gates.

    Returns
    -------
    dict :
        Dictionary of detectors -> frequency series data with the gates
        applied after overwhitening. The returned data is not overwhitened.
    """
    logging.info("Applying gates to overwhitened data")
    # overwhiten the data
    out = {}
    for det in gates:
        out[det] = stilde_dict[det] / psd_dict[det]
    # now apply the gate
    out = apply_gates_to_fd(out, gates)
    # now unwhiten
    for det in gates:
        out[det] *= psd_dict[det]
    return out
Exemple #2
0
 def generate(self, **kwargs):
     """Generates a waveform, applies a time shift and the detector response
     function from the given kwargs.
     """
     self.current_params.update(kwargs)
     rfparams = {
         param: self.current_params[param]
         for param in kwargs if param not in self.location_args
     }
     hp, hc = self.rframe_generator.generate(**rfparams)
     if isinstance(hp, TimeSeries):
         df = self.current_params['delta_f']
         hp = hp.to_frequencyseries(delta_f=df)
         hc = hc.to_frequencyseries(delta_f=df)
         # time-domain waveforms will not be shifted so that the peak amp
         # happens at the end of the time series (as they are for f-domain),
         # so we add an additional shift to account for it
         tshift = 1. / df - abs(hp._epoch)
     else:
         tshift = 0.
     hp._epoch = hc._epoch = self._epoch
     h = {}
     if self.detector_names != ['RF']:
         for detname, det in self.detectors.items():
             # apply detector response function
             fp, fc = det.antenna_pattern(
                 self.current_params['ra'], self.current_params['dec'],
                 self.current_params['polarization'],
                 self.current_params['tc'])
             thish = fp * hp + fc * hc
             # apply the time shift
             tc = self.current_params['tc'] + \
                 det.time_delay_from_earth_center(self.current_params['ra'],
                      self.current_params['dec'], self.current_params['tc'])
             h[detname] = apply_fd_time_shift(thish,
                                              tc + tshift,
                                              copy=False)
             if self.recalib:
                 # recalibrate with given calibration model
                 h[detname] = \
                     self.recalib[detname].map_to_adjust(h[detname],
                         **self.current_params)
     else:
         # no detector response, just use the + polarization
         if 'tc' in self.current_params:
             hp = apply_fd_time_shift(hp,
                                      self.current_params['tc'] + tshift,
                                      copy=False)
         h['RF'] = hp
     if self.gates is not None:
         # resize all to nearest power of 2
         for d in h.values():
             d.resize(ceilpow2(len(d) - 1) + 1)
         h = strain.apply_gates_to_fd(h, self.gates)
     return h
Exemple #3
0
 def generate(self, **kwargs):
     """Generates a waveform, applies a time shift and the detector response
     function from the given kwargs.
     """
     self.current_params.update(kwargs)
     rfparams = {param: self.current_params[param]
         for param in kwargs if param not in self.location_args}
     hp, hc = self.rframe_generator.generate(**rfparams)
     if isinstance(hp, TimeSeries):
         df = self.current_params['delta_f']
         hp = hp.to_frequencyseries(delta_f=df)
         hc = hc.to_frequencyseries(delta_f=df)
         # time-domain waveforms will not be shifted so that the peak amp
         # happens at the end of the time series (as they are for f-domain),
         # so we add an additional shift to account for it
         tshift = 1./df - abs(hp._epoch)
     else:
         tshift = 0.
     hp._epoch = hc._epoch = self._epoch
     h = {}
     if self.detector_names != ['RF']:
         for detname, det in self.detectors.items():
             # apply detector response function
             fp, fc = det.antenna_pattern(self.current_params['ra'],
                         self.current_params['dec'],
                         self.current_params['polarization'],
                         self.current_params['tc'])
             thish = fp*hp + fc*hc
             # apply the time shift
             tc = self.current_params['tc'] + \
                 det.time_delay_from_earth_center(self.current_params['ra'],
                      self.current_params['dec'], self.current_params['tc'])
             h[detname] = apply_fd_time_shift(thish, tc+tshift, copy=False)
             if self.recalib:
                 # recalibrate with given calibration model
                 h[detname] = \
                     self.recalib[detname].map_to_adjust(h[detname],
                         **self.current_params)
     else:
         # no detector response, just use the + polarization
         if 'tc' in self.current_params:
             hp = apply_fd_time_shift(hp, self.current_params['tc']+tshift,
                                      copy=False)
         h['RF'] = hp
     if self.gates is not None:
         # resize all to nearest power of 2
         for d in h.values():
             d.resize(ceilpow2(len(d)-1) + 1)
         h = strain.apply_gates_to_fd(h, self.gates)
     return h
Exemple #4
0
    def generate(self, **kwargs):
        """Generates and returns a waveform decompsed into separate modes.

        Returns
        -------
        dict :
            Dictionary of ``detector names -> modes -> (ulm, vlm)``, where
            ``ulm, vlm`` are the frequency-domain representations of the real
            and imaginary parts, respectively, of the complex time series
            representation of the ``hlm``.
        """
        self.current_params.update(kwargs)
        rfparams = {param: self.current_params[param]
            for param in kwargs if param not in self.location_args}
        hlms = self.rframe_generator.generate(**rfparams)
        h = {det: {} for det in self.detectors}
        for mode in hlms:
            ulm, vlm = hlms[mode]
            if isinstance(ulm, TimeSeries):
                df = self.current_params['delta_f']
                ulm = ulm.to_frequencyseries(delta_f=df)
                vlm = vlm.to_frequencyseries(delta_f=df)
                # time-domain waveforms will not be shifted so that the peak
                # amplitude happens at the end of the time series (as they are
                # for f-domain), so we add an additional shift to account for
                # it
                tshift = 1./df - abs(ulm._epoch)
            else:
                tshift = 0.
            ulm._epoch = vlm._epoch = self._epoch
            if self.detector_names != ['RF']:
                for detname, det in self.detectors.items():
                    # apply the time shift
                    tc = self.current_params['tc'] + \
                        det.time_delay_from_earth_center(
                            self.current_params['ra'],
                            self.current_params['dec'],
                            self.current_params['tc'])
                    detulm = apply_fd_time_shift(ulm, tc+tshift, copy=True)
                    detvlm = apply_fd_time_shift(vlm, tc+tshift, copy=True)
                    if self.recalib:
                        # recalibrate with given calibration model
                        detulm = self.recalib[detname].map_to_adjust(
                            detulm, **self.current_params)
                        detvlm = self.recalib[detname].map_to_adjust(
                            detvlm, **self.current_params)
                    h[detname][mode] = (detulm, detvlm)
            else:
                # no detector response, just apply time shift
                if 'tc' in self.current_params:
                    ulm = apply_fd_time_shift(ulm,
                                              self.current_params['tc']+tshift,
                                              copy=False)
                    vlm = apply_fd_time_shift(vlm,
                                              self.current_params['tc']+tshift,
                                              copy=False)
                h['RF'][mode] = (ulm, vlm)
            if self.gates is not None:
                # resize all to nearest power of 2
                ulms = {}
                vlms = {}
                for det in h:
                    ulm, vlm = h[det][mode]
                    ulm.resize(ceilpow2(len(ulm)-1) + 1)
                    vlm.resize(ceilpow2(len(vlm)-1) + 1)
                    ulms[det] = ulm
                    vlms[det] = vlm
                ulms = strain.apply_gates_to_fd(ulms, self.gates)
                vlms = strain.apply_gates_to_fd(ulms, self.gates)
                for det in ulms:
                    h[det][mode] = (ulms[det], vlms[det])
        return h
Exemple #5
0
    def generate(self, **kwargs):
        """Generates a waveform polarizations and applies a time shift.

        Returns
        -------
        dict :
            Dictionary of ``detector names -> (hp, hc)``, where ``hp, hc`` are
            the plus and cross polarization, respectively.
        """
        self.current_params.update(kwargs)
        rfparams = {param: self.current_params[param]
            for param in kwargs if param not in self.location_args}
        hp, hc = self.rframe_generator.generate(**rfparams)
        if isinstance(hp, TimeSeries):
            df = self.current_params['delta_f']
            hp = hp.to_frequencyseries(delta_f=df)
            hc = hc.to_frequencyseries(delta_f=df)
            # time-domain waveforms will not be shifted so that the peak amp
            # happens at the end of the time series (as they are for f-domain),
            # so we add an additional shift to account for it
            tshift = 1./df - abs(hp._epoch)
        else:
            tshift = 0.
        hp._epoch = hc._epoch = self._epoch
        h = {}
        if self.detector_names != ['RF']:
            for detname, det in self.detectors.items():
                # apply the time shift
                tc = self.current_params['tc'] + \
                    det.time_delay_from_earth_center(self.current_params['ra'],
                         self.current_params['dec'], self.current_params['tc'])
                dethp = apply_fd_time_shift(hp, tc+tshift, copy=True)
                dethc = apply_fd_time_shift(hc, tc+tshift, copy=True)
                if self.recalib:
                    # recalibrate with given calibration model
                    dethp = self.recalib[detname].map_to_adjust(
                        dethp, **self.current_params)
                    dethc = self.recalib[detname].map_to_adjust(
                        dethc, **self.current_params)
                h[detname] = (dethp, dethc)
        else:
            # no detector response, just use the + polarization
            if 'tc' in self.current_params:
                hp = apply_fd_time_shift(hp, self.current_params['tc']+tshift,
                                         copy=False)
                hc = apply_fd_time_shift(hc, self.current_params['tc']+tshift,
                                         copy=False)
            h['RF'] = (hp, hc)
        if self.gates is not None:
            # resize all to nearest power of 2
            hps = {}
            hcs = {}
            for det in h:
                hp = h[det]
                hc = h[det]
                hp.resize(ceilpow2(len(hp)-1) + 1)
                hc.resize(ceilpow2(len(hc)-1) + 1)
                hps[det] = hp
                hcs[det] = hc
            hps = strain.apply_gates_to_fd(hps, self.gates)
            hcs = strain.apply_gates_to_fd(hps, self.gates)
            h = {det: (hps[det], hcs[det]) for det in h}
        return h
Exemple #6
0
def data_from_cli(opts):
    """Loads the data needed for a model from the given
    command-line options. Gates specifed on the command line are also applied.

    Parameters
    ----------
    opts : ArgumentParser parsed args
        Argument options parsed from a command line string (the sort of thing
        returned by `parser.parse_args`).

    Returns
    -------
    strain_dict : dict
        Dictionary of instruments -> `TimeSeries` strain.
    stilde_dict : dict
        Dictionary of instruments -> `FrequencySeries` strain.
    psd_dict : dict
        Dictionary of instruments -> `FrequencySeries` psds.
    """
    # get gates to apply
    gates = gates_from_cli(opts)
    psd_gates = psd_gates_from_cli(opts)

    # get strain time series
    instruments = opts.instruments if opts.instruments is not None else []
    strain_dict = strain_from_cli_multi_ifos(opts,
                                             instruments,
                                             precision="double")
    # apply gates if not waiting to overwhiten
    if not opts.gate_overwhitened:
        strain_dict = apply_gates_to_td(strain_dict, gates)

    # get strain time series to use for PSD estimation
    # if user has not given the PSD time options then use same data as analysis
    if opts.psd_start_time and opts.psd_end_time:
        logging.info("Will generate a different time series for PSD "
                     "estimation")
        psd_opts = opts
        psd_opts.gps_start_time = psd_opts.psd_start_time
        psd_opts.gps_end_time = psd_opts.psd_end_time
        psd_strain_dict = strain_from_cli_multi_ifos(psd_opts,
                                                     instruments,
                                                     precision="double")
        # apply any gates
        logging.info("Applying gates to PSD data")
        psd_strain_dict = apply_gates_to_td(psd_strain_dict, psd_gates)

    elif opts.psd_start_time or opts.psd_end_time:
        raise ValueError("Must give --psd-start-time and --psd-end-time")
    else:
        psd_strain_dict = strain_dict

    # FFT strain and save each of the length of the FFT, delta_f, and
    # low frequency cutoff to a dict
    stilde_dict = {}
    length_dict = {}
    delta_f_dict = {}
    low_frequency_cutoff_dict = low_frequency_cutoff_from_cli(opts)
    for ifo in instruments:
        stilde_dict[ifo] = strain_dict[ifo].to_frequencyseries()
        length_dict[ifo] = len(stilde_dict[ifo])
        delta_f_dict[ifo] = stilde_dict[ifo].delta_f

    # get PSD as frequency series
    psd_dict = psd_from_cli_multi_ifos(opts,
                                       length_dict,
                                       delta_f_dict,
                                       low_frequency_cutoff_dict,
                                       instruments,
                                       strain_dict=psd_strain_dict,
                                       precision="double")

    # apply any gates to overwhitened data, if desired
    if opts.gate_overwhitened and opts.gate is not None:
        logging.info("Applying gates to overwhitened data")
        # overwhiten the data
        for ifo in gates:
            stilde_dict[ifo] /= psd_dict[ifo]
        stilde_dict = apply_gates_to_fd(stilde_dict, gates)
        # unwhiten the data for the model
        for ifo in gates:
            stilde_dict[ifo] *= psd_dict[ifo]

    return strain_dict, stilde_dict, psd_dict
Exemple #7
0
def data_from_cli(opts):
    """Loads the data needed for a model from the given
    command-line options. Gates specifed on the command line are also applied.

    Parameters
    ----------
    opts : ArgumentParser parsed args
        Argument options parsed from a command line string (the sort of thing
        returned by `parser.parse_args`).

    Returns
    -------
    strain_dict : dict
        Dictionary of instruments -> `TimeSeries` strain.
    stilde_dict : dict
        Dictionary of instruments -> `FrequencySeries` strain.
    psd_dict : dict
        Dictionary of instruments -> `FrequencySeries` psds.
    """
    # get gates to apply
    gates = gates_from_cli(opts)
    psd_gates = psd_gates_from_cli(opts)

    # get strain time series
    instruments = opts.instruments if opts.instruments is not None else []
    strain_dict = strain_from_cli_multi_ifos(opts, instruments,
                                             precision="double")
    # apply gates if not waiting to overwhiten
    if not opts.gate_overwhitened:
        strain_dict = apply_gates_to_td(strain_dict, gates)

    # get strain time series to use for PSD estimation
    # if user has not given the PSD time options then use same data as analysis
    if opts.psd_start_time and opts.psd_end_time:
        logging.info("Will generate a different time series for PSD "
                     "estimation")
        psd_opts = opts
        psd_opts.gps_start_time = psd_opts.psd_start_time
        psd_opts.gps_end_time = psd_opts.psd_end_time
        psd_strain_dict = strain_from_cli_multi_ifos(psd_opts,
                                                     instruments,
                                                     precision="double")
        # apply any gates
        logging.info("Applying gates to PSD data")
        psd_strain_dict = apply_gates_to_td(psd_strain_dict, psd_gates)

    elif opts.psd_start_time or opts.psd_end_time:
        raise ValueError("Must give --psd-start-time and --psd-end-time")
    else:
        psd_strain_dict = strain_dict

    # FFT strain and save each of the length of the FFT, delta_f, and
    # low frequency cutoff to a dict
    stilde_dict = {}
    length_dict = {}
    delta_f_dict = {}
    low_frequency_cutoff_dict = low_frequency_cutoff_from_cli(opts)
    for ifo in instruments:
        stilde_dict[ifo] = strain_dict[ifo].to_frequencyseries()
        length_dict[ifo] = len(stilde_dict[ifo])
        delta_f_dict[ifo] = stilde_dict[ifo].delta_f

    # get PSD as frequency series
    psd_dict = psd_from_cli_multi_ifos(
        opts, length_dict, delta_f_dict, low_frequency_cutoff_dict,
        instruments, strain_dict=psd_strain_dict, precision="double")

    # apply any gates to overwhitened data, if desired
    if opts.gate_overwhitened and opts.gate is not None:
        logging.info("Applying gates to overwhitened data")
        # overwhiten the data
        for ifo in gates:
            stilde_dict[ifo] /= psd_dict[ifo]
        stilde_dict = apply_gates_to_fd(stilde_dict, gates)
        # unwhiten the data for the model
        for ifo in gates:
            stilde_dict[ifo] *= psd_dict[ifo]

    return strain_dict, stilde_dict, psd_dict