Exemple #1
0
    def __setitem__(self, key, body):

        if key not in self:

            if ephemeris._is_skyfield_obj(body):
                pass
            elif isinstance(body, (tuple, list)) and (len(body) == 2):
                ra, dec = body
                body = ephemeris.skyfield_star_from_ra_dec(ra, dec, bd_name=key)
            else:
                ValueError("Item must be skyfield object or tuple (ra, dec).")

            #window = self._nsigma * cal_utils.guess_fwhm(400.0, pol='X', dec=body.dec.radians, sigma=True)
            window = self._nsigma * get_window(400.0, pol='X', dec=body.dec.radians, deg=True)

            self._entries[key] = NameSpace()
            self._entries[key].body = body
            self._entries[key].window = window
            self._entries[key].files = {}
            self._entries[key].file_span = {}
Exemple #2
0
def main(config_file=None, logging_params=DEFAULT_LOGGING):

    # Setup logging
    log.setup_logging(logging_params)
    mlog = log.get_logger(__name__)

    # Set config
    config = DEFAULTS.deepcopy()
    if config_file is not None:
        config.merge(NameSpace(load_yaml_config(config_file)))

    # Set niceness
    current_niceness = os.nice(0)
    os.nice(config.niceness - current_niceness)
    mlog.info('Changing process niceness from %d to %d.  Confirm:  %d' %
              (current_niceness, config.niceness, os.nice(0)))

    # Find acquisition files
    acq_files = sorted(glob(os.path.join(config.data_dir, config.acq, "*.h5")))
    nfiles = len(acq_files)

    # Determine time range of each file
    findex = []
    tindex = []
    for ii, filename in enumerate(acq_files):
        subdata = andata.CorrData.from_acq_h5(filename, datasets=())

        findex += [ii] * subdata.ntime
        tindex += range(subdata.ntime)

    findex = np.array(findex)
    tindex = np.array(tindex)

    # Determine transits within these files
    transits = []

    data = andata.CorrData.from_acq_h5(acq_files, datasets=())

    solar_rise = ephemeris.solar_rising(data.time[0] - 24.0 * 3600.0,
                                        end_time=data.time[-1])

    for rr in solar_rise:

        ss = ephemeris.solar_setting(rr)[0]

        solar_flag = np.flatnonzero((data.time >= rr) & (data.time <= ss))

        if solar_flag.size > 0:

            solar_flag = solar_flag[::config.downsample]

            tval = data.time[solar_flag]

            this_findex = findex[solar_flag]
            this_tindex = tindex[solar_flag]

            file_list, tindices = [], []

            for ii in range(nfiles):

                this_file = np.flatnonzero(this_findex == ii)

                if this_file.size > 0:

                    file_list.append(acq_files[ii])
                    tindices.append(this_tindex[this_file])

            date = ephemeris.unix_to_datetime(rr).strftime('%Y%m%dT%H%M%SZ')
            transits.append((date, tval, file_list, tindices))

    # Specify some parameters for algorithm
    N = 2048

    noffset = len(config.offsets)

    if config.sep_pol:
        rank = 1
        cross_pol = False
        pol = np.array(['S', 'E'])
        pol_s = np.array(
            [rr + 256 * xx for xx in range(0, 8, 2) for rr in range(256)])
        pol_e = np.array(
            [rr + 256 * xx for xx in range(1, 8, 2) for rr in range(256)])
        prod_ss = []
        prod_ee = []
    else:
        rank = 8
        cross_pol = config.cross_pol
        pol = np.array(['all'])

    npol = pol.size

    # Create file prefix and suffix
    prefix = []

    prefix.append("gain_solutions")

    if config.output_prefix is not None:
        prefix.append(config.output_prefix)

    prefix = '_'.join(prefix)

    suffix = []

    suffix.append("pol_%s" % '_'.join(pol))

    suffix.append("niter_%d" % config.niter)

    if cross_pol:
        suffix.append("zerocross")
    else:
        suffix.append("keepcross")

    if config.normalize:
        suffix.append("normed")
    else:
        suffix.append("notnormed")

    suffix = '_'.join(suffix)

    # Loop over solar transits
    for date, timestamps, files, time_indices in transits:

        nfiles = len(files)

        mlog.info("%s (%d files) " % (date, nfiles))

        output_file = os.path.join(
            config.output_dir, "%s_SUN_%s_%s.pickle" % (prefix, date, suffix))

        mlog.info("Saving to:  %s" % output_file)

        # Get info about this set of files
        data = andata.CorrData.from_acq_h5(files, datasets=['flags/inputs'])

        prod = data.prod

        coord = sun_coord(timestamps, deg=True)

        fstart = config.freq_start if config.freq_start is not None else 0
        fstop = config.freq_stop if config.freq_stop is not None else data.freq.size
        freq_index = range(fstart, fstop)

        freq = data.freq[freq_index]

        ntime = timestamps.size
        nfreq = freq.size

        # Determind bad inputs
        if config.bad_input_file is None or not os.path.isfile(
                config.bad_input_file):
            bad_input = np.flatnonzero(
                ~np.all(data.flags['inputs'][:], axis=-1))
        else:
            with open(config.bad_input_file, 'r') as handler:
                bad_input = pickle.load(handler)

        mlog.info("%d inputs flagged as bad." % bad_input.size)
        bad_prod = np.array([
            ii for ii, pp in enumerate(prod)
            if (pp[0] in bad_input) or (pp[1] in bad_input)
        ])

        # Create arrays to hold the results
        ores = {}
        ores['date'] = date
        ores['coord'] = coord
        ores['time'] = timestamps
        ores['freq'] = freq
        ores['offsets'] = config.offsets
        ores['pol'] = pol

        ores['evalue'] = np.zeros((noffset, nfreq, ntime, N), dtype=np.float32)
        ores['resp'] = np.zeros((noffset, nfreq, ntime, N, config.neigen),
                                dtype=np.complex64)
        ores['resp_err'] = np.zeros((noffset, nfreq, ntime, N, config.neigen),
                                    dtype=np.float32)

        # Loop over frequencies
        for ff, find in enumerate(freq_index):

            mlog.info("Freq %d of %d.  %0.2f MHz." % (ff + 1, nfreq, freq[ff]))

            cnt = 0

            # Loop over files
            for ii, (filename, tind) in enumerate(zip(files, time_indices)):

                ntind = len(tind)
                mlog.info("Processing file %s (%d time samples)" %
                          (filename, ntind))

                # Loop over times
                for tt in tind:

                    t0 = time.time()

                    mlog.info("Time %d of %d.  %d index of current file." %
                              (cnt + 1, ntime, tt))

                    # Load visibilities
                    with h5py.File(filename, 'r') as hf:

                        vis = hf['vis'][find, :, tt]

                    # Set bad products equal to zero
                    vis[bad_prod] = 0.0

                    # Different code if we are separating polarisations
                    if config.sep_pol:

                        if not any(prod_ss):

                            for pind, pp in enumerate(prod):
                                if (pp[0] in pol_s) and (pp[1] in pol_s):
                                    prod_ss.append(pind)

                                elif (pp[0] in pol_e) and (pp[1] in pol_e):
                                    prod_ee.append(pind)

                            prod_ss = np.array(prod_ss)
                            prod_ee = np.array(prod_ee)

                            mlog.info("Product sizes: %d, %d" %
                                      (prod_ss.size, prod_ee.size))

                        # Loop over polarisations
                        for pp, (input_pol,
                                 prod_pol) in enumerate([(pol_s, prod_ss),
                                                         (pol_e, prod_ee)]):

                            visp = vis[prod_pol]

                            mlog.info("pol %s, visibility size:  %d" %
                                      (pol[pp], visp.size))

                            # Loop over offsets
                            for oo, off in enumerate(config.offsets):

                                mlog.info(
                                    "pol %s, rank %d, niter %d, offset %d, cross_pol %s, neigen %d"
                                    % (pol[pp], rank, config.niter, off,
                                       cross_pol, config.neigen))

                                ev, rr, rre = solve_gain(
                                    visp,
                                    cutoff=off,
                                    cross_pol=cross_pol,
                                    normalize=config.normalize,
                                    rank=rank,
                                    niter=config.niter,
                                    neigen=config.neigen)

                                ores['evalue'][oo, ff, cnt, input_pol] = ev
                                ores['resp'][oo, ff, cnt, input_pol, :] = rr
                                ores['resp_err'][oo, ff, cnt,
                                                 input_pol, :] = rre

                    else:

                        # Loop over offsets
                        for oo, off in enumerate(config.offsets):

                            mlog.info(
                                "rank %d, niter %d, offset %d, cross_pol %s, neigen %d"
                                % (rank, config.niter, off, cross_pol,
                                   config.neigen))

                            ev, rr, rre = solve_gain(
                                vis,
                                cutoff=off,
                                cross_pol=cross_pol,
                                normalize=config.normalize,
                                rank=rank,
                                niter=config.niter,
                                neigen=config.neigen)

                            ores['evalue'][oo, ff, cnt, :] = ev
                            ores['resp'][oo, ff, cnt, :, :] = rr
                            ores['resp_err'][oo, ff, cnt, :, :] = rre

                    # Increment time counter
                    cnt += 1

                    # Print time elapsed
                    mlog.info("Took %0.1f seconds." % (time.time() - t0, ))

        # Save to pickle file
        with open(output_file, 'w') as handle:

            pickle.dump(ores, handle)
Exemple #3
0
import caput.time as ctime
import time
import skyfield.api

from ch_util import tools, ephemeris, andata
from ch_util.fluxcat import FluxCatalog

sys.path.insert(0, "/home/ssiegel/ch_pipeline/venv/src/draco")
from draco.util import _fast_tools

###################################################
# default variables
###################################################

DEFAULTS = NameSpace(
    load_yaml_config(
        os.path.join(os.path.dirname(os.path.realpath(__file__)),
                     'defaults.yaml') + ':n2cal'))

LOG_FILE = os.environ.get(
    'N2CAL_LOG_FILE',
    os.path.join(os.path.dirname(os.path.realpath(__file__)), 'n2cal.log'))

DEFAULT_LOGGING = {
    'formatters': {
        'std': {
            'format': "%(asctime)s %(levelname)s %(name)s: %(message)s",
            'datefmt': "%m/%d %H:%M:%S"
        },
    },
    'handlers': {
        'stderr': {
Exemple #4
0
def offline_point_source_calibration(file_list,
                                     source,
                                     inputmap=None,
                                     start=None,
                                     stop=None,
                                     physical_freq=None,
                                     tcorr=None,
                                     logging_params=DEFAULT_LOGGING,
                                     **kwargs):
    # Load config
    config = DEFAULTS.deepcopy()
    config.merge(NameSpace(kwargs))

    # Setup logging
    log.setup_logging(logging_params)
    mlog = log.get_logger(__name__)

    mlog.info("ephemeris file: %s" % ephemeris.__file__)

    # Set the model to use
    fitter_function = utils.fit_point_source_transit
    model_function = utils.model_point_source_transit

    farg = inspect.getargspec(fitter_function)
    defaults = {
        key: val
        for key, val in zip(farg.args[-len(farg.defaults):], farg.defaults)
    }
    poly_deg_amp = kwargs.get('poly_deg_amp', defaults['poly_deg_amp'])
    poly_deg_phi = kwargs.get('poly_deg_phi', defaults['poly_deg_phi'])
    poly_type = kwargs.get('poly_type', defaults['poly_type'])

    param_name = ([
        '%s_poly_amp_coeff%d' % (poly_type, cc)
        for cc in range(poly_deg_amp + 1)
    ] + [
        '%s_poly_phi_coeff%d' % (poly_type, cc)
        for cc in range(poly_deg_phi + 1)
    ])

    model_kwargs = [('poly_deg_amp', poly_deg_amp),
                    ('poly_deg_phi', poly_deg_phi), ('poly_type', poly_type)]
    model_name = '.'.join(
        [getattr(model_function, key) for key in ['__module__', '__name__']])

    tval = {}

    # Set where to evaluate gain
    ha_eval_str = ['raw_transit']

    if config.multi_sample:
        ha_eval_str += ['transit', 'peak']
        ha_eval = [0.0, None]
        fitslc = slice(1, 3)

    ind_eval = ha_eval_str.index(config.evaluate_gain_at)

    # Determine dimensions
    direction = ['amp', 'phi']
    nparam = len(param_name)
    ngain = len(ha_eval_str)
    ndir = len(direction)

    # Determine frequencies
    data = andata.CorrData.from_acq_h5(file_list,
                                       datasets=(),
                                       start=start,
                                       stop=stop)
    freq = data.freq

    if physical_freq is not None:
        index_freq = np.array(
            [np.argmin(np.abs(ff - freq)) for ff in physical_freq])
        freq_sel = utils.convert_to_slice(index_freq)
        freq = freq[index_freq]
    else:
        index_freq = np.arange(freq.size)
        freq_sel = None

    nfreq = freq.size

    # Compute flux of source
    inv_rt_flux_density = tools.invert_no_zero(
        np.sqrt(FluxCatalog[source].predict_flux(freq)))

    # Read in the eigenvaluess for all frequencies
    data = andata.CorrData.from_acq_h5(file_list,
                                       datasets=['erms', 'eval'],
                                       freq_sel=freq_sel,
                                       start=start,
                                       stop=stop)

    # Determine source coordinates
    this_csd = np.floor(ephemeris.unix_to_csd(np.median(data.time)))
    timestamp0 = ephemeris.transit_times(FluxCatalog[source].skyfield,
                                         ephemeris.csd_to_unix(this_csd))[0]
    src_ra, src_dec = ephemeris.object_coords(FluxCatalog[source].skyfield,
                                              date=timestamp0,
                                              deg=True)

    ra = ephemeris.lsa(data.time)
    ha = ra - src_ra
    ha = ha - (ha > 180.0) * 360.0 + (ha < -180.0) * 360.0
    ha = np.radians(ha)

    itrans = np.argmin(np.abs(ha))

    window = 0.75 * np.max(np.abs(ha))

    off_source = np.abs(ha) > window

    mlog.info("CSD %d" % this_csd)
    mlog.info("Hour angle at transit (%d of %d):  %0.2f deg   " %
              (itrans, len(ha), np.degrees(ha[itrans])))
    mlog.info("Hour angle off source: %0.2f deg" %
              np.median(np.abs(np.degrees(ha[off_source]))))

    src_dec = np.radians(src_dec)
    lat = np.radians(ephemeris.CHIMELATITUDE)

    # Determine division of frequencies
    ninput = data.ninput
    ntime = data.ntime
    nblock_freq = int(np.ceil(nfreq / float(config.nfreq_per_block)))

    # Determine bad inputs
    eps = 10.0 * np.finfo(data['erms'].dtype).eps
    good_freq = np.flatnonzero(np.all(data['erms'][:] > eps, axis=-1))
    ind_sub_freq = good_freq[slice(0, good_freq.size,
                                   max(int(good_freq.size / 10), 1))]

    tmp_data = andata.CorrData.from_acq_h5(file_list,
                                           datasets=['evec'],
                                           freq_sel=ind_sub_freq,
                                           start=start,
                                           stop=stop)
    eps = 10.0 * np.finfo(tmp_data['evec'].dtype).eps
    bad_input = np.flatnonzero(
        np.all(np.abs(tmp_data['evec'][:, 0]) < eps, axis=(0, 2)))

    input_axis = tmp_data.input.copy()

    del tmp_data

    # Query layout database for correlator inputs
    if inputmap is None:
        inputmap = tools.get_correlator_inputs(
            datetime.datetime.utcfromtimestamp(data.time[itrans]),
            correlator='chime')

    inputmap = tools.reorder_correlator_inputs(input_axis, inputmap)

    tools.change_chime_location(rotation=config.telescope_rotation)

    # Determine x and y pol index
    xfeeds = np.array([
        idf for idf, inp in enumerate(inputmap)
        if (idf not in bad_input) and tools.is_array_x(inp)
    ])
    yfeeds = np.array([
        idf for idf, inp in enumerate(inputmap)
        if (idf not in bad_input) and tools.is_array_y(inp)
    ])

    nfeed = xfeeds.size + yfeeds.size

    pol = [yfeeds, xfeeds]
    polstr = ['Y', 'X']
    npol = len(pol)

    neigen = min(max(npol, config.neigen), data['eval'].shape[1])

    phase_ref = config.phase_reference_index
    phase_ref_by_pol = [
        pol[pp].tolist().index(phase_ref[pp]) for pp in range(npol)
    ]

    # Calculate dynamic range
    eval0_off_source = np.median(data['eval'][:, 0, off_source], axis=-1)

    dyn = data['eval'][:, 1, :] * tools.invert_no_zero(
        eval0_off_source[:, np.newaxis])

    # Determine frequencies to mask
    not_rfi = np.ones((nfreq, 1), dtype=np.bool)
    if config.mask_rfi is not None:
        for frng in config.mask_rfi:
            not_rfi[:, 0] &= ((freq < frng[0]) | (freq > frng[1]))

    mlog.info("%0.1f percent of frequencies available after masking RFI." %
              (100.0 * np.sum(not_rfi, dtype=np.float32) / float(nfreq), ))

    #dyn_flg = utils.contiguous_flag(dyn > config.dyn_rng_threshold, centre=itrans)
    if source in config.dyn_rng_threshold:
        dyn_rng_threshold = config.dyn_rng_threshold[source]
    else:
        dyn_rng_threshold = config.dyn_rng_threshold.default

    mlog.info("Dynamic range threshold set to %0.1f." % dyn_rng_threshold)

    dyn_flg = dyn > dyn_rng_threshold

    # Calculate fit flag
    fit_flag = np.zeros((nfreq, npol, ntime), dtype=np.bool)
    for pp in range(npol):

        mlog.info("Dynamic Range Nsample, Pol %d:  %s" % (pp, ','.join([
            "%d" % xx for xx in np.percentile(np.sum(dyn_flg, axis=-1),
                                              [25, 50, 75, 100])
        ])))

        if config.nsigma1 is None:
            fit_flag[:, pp, :] = dyn_flg & not_rfi

        else:

            fit_window = config.nsigma1 * np.radians(
                utils.get_window(freq, pol=polstr[pp], dec=src_dec, deg=True))

            win_flg = np.abs(ha)[np.newaxis, :] <= fit_window[:, np.newaxis]

            fit_flag[:, pp, :] = (dyn_flg & win_flg & not_rfi)

    # Calculate base error
    base_err = data['erms'][:, np.newaxis, :]

    # Check for sign flips
    ref_resp = andata.CorrData.from_acq_h5(file_list,
                                           datasets=['evec'],
                                           input_sel=config.eigen_reference,
                                           freq_sel=freq_sel,
                                           start=start,
                                           stop=stop)['evec'][:, 0:neigen,
                                                              0, :]

    sign0 = 1.0 - 2.0 * (ref_resp.real < 0.0)

    # Check that we have the correct reference feed
    if np.any(np.abs(ref_resp.imag) > 0.0):
        ValueError("Reference feed %d is incorrect." % config.eigen_reference)

    del ref_resp

    # Save index_map
    results = {}
    results['model'] = model_name
    results['param'] = param_name
    results['freq'] = data.index_map['freq'][:]
    results['input'] = input_axis
    results['eval'] = ha_eval_str
    results['dir'] = direction

    for key, val in model_kwargs:
        results[key] = val

    # Initialize numpy arrays to hold results
    if config.return_response:

        results['response'] = np.zeros((nfreq, ninput, ntime),
                                       dtype=np.complex64)
        results['response_err'] = np.zeros((nfreq, ninput, ntime),
                                           dtype=np.float32)
        results['fit_flag'] = fit_flag
        results['ha_axis'] = ha
        results['ra'] = ra

    else:

        results['gain_eval'] = np.zeros((nfreq, ninput, ngain),
                                        dtype=np.complex64)
        results['weight_eval'] = np.zeros((nfreq, ninput, ngain),
                                          dtype=np.float32)
        results['frac_gain_err'] = np.zeros((nfreq, ninput, ngain, ndir),
                                            dtype=np.float32)

        results['parameter'] = np.zeros((nfreq, ninput, nparam),
                                        dtype=np.float32)
        results['parameter_err'] = np.zeros((nfreq, ninput, nparam),
                                            dtype=np.float32)

        results['index_eval'] = np.full((nfreq, ninput), -1, dtype=np.int8)
        results['gain'] = np.zeros((nfreq, ninput), dtype=np.complex64)
        results['weight'] = np.zeros((nfreq, ninput), dtype=np.float32)

        results['ndof'] = np.zeros((nfreq, ninput, ndir), dtype=np.float32)
        results['chisq'] = np.zeros((nfreq, ninput, ndir), dtype=np.float32)

        results['timing'] = np.zeros((nfreq, ninput), dtype=np.complex64)

    # Initialize metric like variables
    results['runtime'] = np.zeros((nblock_freq, 2), dtype=np.float64)

    # Compute distances
    dist = tools.get_feed_positions(inputmap)
    for pp, feeds in enumerate(pol):
        dist[feeds, :] -= dist[phase_ref[pp], np.newaxis, :]

    # Loop over frequency blocks
    for gg in range(nblock_freq):

        mlog.info("Frequency block %d of %d." % (gg, nblock_freq))

        fstart = gg * config.nfreq_per_block
        fstop = min((gg + 1) * config.nfreq_per_block, nfreq)
        findex = np.arange(fstart, fstop)
        ngroup = findex.size

        freq_sel = utils.convert_to_slice(index_freq[findex])

        timeit_start_gg = time.time()

        #
        if config.return_response:
            gstart = start
            gstop = stop

            tslc = slice(0, ntime)

        else:
            good_times = np.flatnonzero(np.any(fit_flag[findex], axis=(0, 1)))

            if good_times.size == 0:
                continue

            gstart = int(np.min(good_times))
            gstop = int(np.max(good_times)) + 1

            tslc = slice(gstart, gstop)

            gstart += start
            gstop += start

        hag = ha[tslc]
        itrans = np.argmin(np.abs(hag))

        # Load eigenvectors.
        nudata = andata.CorrData.from_acq_h5(
            file_list,
            datasets=['evec', 'vis', 'flags/vis_weight'],
            apply_gain=False,
            freq_sel=freq_sel,
            start=gstart,
            stop=gstop)

        # Save time to load data
        results['runtime'][gg, 0] = time.time() - timeit_start_gg
        timeit_start_gg = time.time()

        mlog.info("Time to load (per frequency):  %0.3f sec" %
                  (results['runtime'][gg, 0] / ngroup, ))

        # Loop over polarizations
        for pp, feeds in enumerate(pol):

            # Get timing correction
            if tcorr is not None:
                tgain = tcorr.get_gain(nudata.freq, nudata.input[feeds],
                                       nudata.time)
                tgain *= tgain[:, phase_ref_by_pol[pp], np.newaxis, :].conj()

                tgain_transit = tgain[:, :, itrans].copy()
                tgain *= tgain_transit[:, :, np.newaxis].conj()

            # Create the polarization masking vector
            P = np.zeros((1, ninput, 1), dtype=np.float64)
            P[:, feeds, :] = 1.0

            # Loop over frequencies
            for gff, ff in enumerate(findex):

                flg = fit_flag[ff, pp, tslc]

                if (2 * int(np.sum(flg))) < (nparam +
                                             1) and not config.return_response:
                    continue

                # Normalize by eigenvalue and correct for pi phase flips in process.
                resp = (nudata['evec'][gff, 0:neigen, :, :] *
                        np.sqrt(data['eval'][ff, 0:neigen, np.newaxis, tslc]) *
                        sign0[ff, :, np.newaxis, tslc])

                # Rotate to single-pol response
                # Move time to first axis for the matrix multiplication
                invL = tools.invert_no_zero(
                    np.rollaxis(data['eval'][ff, 0:neigen, np.newaxis, tslc],
                                -1, 0))

                UT = np.rollaxis(resp, -1, 0)
                U = np.swapaxes(UT, -1, -2)

                mu, vp = np.linalg.eigh(np.matmul(UT.conj(), P * U))

                rsign0 = (1.0 - 2.0 * (vp[:, 0, np.newaxis, :].real < 0.0))

                resp = mu[:, np.newaxis, :] * np.matmul(U, rsign0 * vp * invL)

                # Extract feeds of this pol
                # Transpose so that time is back to last axis
                resp = resp[:, feeds, -1].T

                # Compute error on response
                dataflg = ((nudata.weight[gff, feeds, :] > 0.0)
                           & np.isfinite(nudata.weight[gff, feeds, :])).astype(
                               np.float32)

                resp_err = dataflg * base_err[ff, :, tslc] * np.sqrt(
                    nudata.vis[gff, feeds, :].real) * tools.invert_no_zero(
                        np.sqrt(mu[np.newaxis, :, -1]))

                # Reference to specific input
                resp *= np.exp(
                    -1.0J *
                    np.angle(resp[phase_ref_by_pol[pp], np.newaxis, :]))

                # Apply timing correction
                if tcorr is not None:
                    resp *= tgain[gff]

                    results['timing'][ff, feeds] = tgain_transit[gff]

                # Fringestop
                lmbda = scipy.constants.c * 1e-6 / nudata.freq[gff]

                resp *= tools.fringestop_phase(
                    hag[np.newaxis, :], lat, src_dec,
                    dist[feeds, 0, np.newaxis] / lmbda,
                    dist[feeds, 1, np.newaxis] / lmbda)

                # Normalize by source flux
                resp *= inv_rt_flux_density[ff]
                resp_err *= inv_rt_flux_density[ff]

                # If requested, reference phase to the median value
                if config.med_phase_ref:
                    phi0 = np.angle(resp[:, itrans, np.newaxis])
                    resp *= np.exp(-1.0J * phi0)
                    resp *= np.exp(
                        -1.0J *
                        np.median(np.angle(resp), axis=0, keepdims=True))
                    resp *= np.exp(1.0J * phi0)

                # Check if return_response flag was set by user
                if not config.return_response:

                    if config.multi_sample:
                        moving_window = config.nsigma2 and config.nsigma2 * np.radians(
                            utils.get_window(nudata.freq[gff],
                                             pol=polstr[pp],
                                             dec=src_dec,
                                             deg=True))

                    # Loop over inputs
                    for pii, ii in enumerate(feeds):

                        is_good = flg & (np.abs(resp[pii, :]) >
                                         0.0) & (resp_err[pii, :] > 0.0)

                        # Set the intial gains based on raw response at transit
                        if is_good[itrans]:
                            results['gain_eval'][ff, ii,
                                                 0] = tools.invert_no_zero(
                                                     resp[pii, itrans])
                            results['frac_gain_err'][ff, ii, 0, :] = (
                                resp_err[pii, itrans] * tools.invert_no_zero(
                                    np.abs(resp[pii, itrans])))
                            results['weight_eval'][ff, ii, 0] = 0.5 * (
                                np.abs(resp[pii, itrans])**2 *
                                tools.invert_no_zero(resp_err[pii, itrans]))**2

                            results['index_eval'][ff, ii] = 0
                            results['gain'][ff,
                                            ii] = results['gain_eval'][ff, ii,
                                                                       0]
                            results['weight'][ff,
                                              ii] = results['weight_eval'][ff,
                                                                           ii,
                                                                           0]

                        # Exit if not performing multi time sample fit
                        if not config.multi_sample:
                            continue

                        if (2 * int(np.sum(is_good))) < (nparam + 1):
                            continue

                        try:
                            param, param_err, gain, gain_err, ndof, chisq, tval = fitter_function(
                                hag[is_good],
                                resp[pii, is_good],
                                resp_err[pii, is_good],
                                ha_eval,
                                window=moving_window,
                                tval=tval,
                                **config.fit)
                        except Exception as rex:
                            if config.verbose:
                                mlog.info(
                                    "Frequency %0.2f, Feed %d failed with error: %s"
                                    % (nudata.freq[gff], ii, rex))
                            continue

                        # Check for nan
                        wfit = (np.abs(gain) *
                                tools.invert_no_zero(np.abs(gain_err)))**2
                        if np.any(~np.isfinite(np.abs(gain))) or np.any(
                                ~np.isfinite(wfit)):
                            continue

                        # Save to results using the convention that you should *multiply* the visibilites by the gains
                        results['gain_eval'][
                            ff, ii, fitslc] = tools.invert_no_zero(gain)
                        results['frac_gain_err'][ff, ii, fitslc,
                                                 0] = gain_err.real
                        results['frac_gain_err'][ff, ii, fitslc,
                                                 1] = gain_err.imag
                        results['weight_eval'][ff, ii, fitslc] = wfit

                        results['parameter'][ff, ii, :] = param
                        results['parameter_err'][ff, ii, :] = param_err

                        results['ndof'][ff, ii, :] = ndof
                        results['chisq'][ff, ii, :] = chisq

                        # Check if the fit was succesful and update the gain evaluation index appropriately
                        if np.all((chisq / ndof.astype(np.float32)
                                   ) <= config.chisq_per_dof_threshold):
                            results['index_eval'][ff, ii] = ind_eval
                            results['gain'][ff, ii] = results['gain_eval'][
                                ff, ii, ind_eval]
                            results['weight'][ff, ii] = results['weight_eval'][
                                ff, ii, ind_eval]

                else:

                    # Return response only (do not fit model)
                    results['response'][ff, feeds, :] = resp
                    results['response_err'][ff, feeds, :] = resp_err

        # Save time to fit data
        results['runtime'][gg, 1] = time.time() - timeit_start_gg

        mlog.info("Time to fit (per frequency):  %0.3f sec" %
                  (results['runtime'][gg, 1] / ngroup, ))

        # Clean up
        del nudata
        gc.collect()

    # Print total run time
    mlog.info("TOTAL TIME TO LOAD: %0.3f min" %
              (np.sum(results['runtime'][:, 0]) / 60.0, ))
    mlog.info("TOTAL TIME TO FIT:  %0.3f min" %
              (np.sum(results['runtime'][:, 1]) / 60.0, ))

    # Set the best estimate of the gain
    if not config.return_response:

        flag = results['index_eval'] >= 0
        gain = results['gain']

        # Compute amplitude
        amp = np.abs(gain)

        # Hard cutoffs on the amplitude
        med_amp = np.median(amp[flag])
        min_amp = med_amp * config.min_amp_scale_factor
        max_amp = med_amp * config.max_amp_scale_factor

        flag &= ((amp >= min_amp) & (amp <= max_amp))

        # Flag outliers in amplitude for each frequency
        for pp, feeds in enumerate(pol):

            med_amp_by_pol = np.zeros(nfreq, dtype=np.float32)
            sig_amp_by_pol = np.zeros(nfreq, dtype=np.float32)

            for ff in range(nfreq):

                this_flag = flag[ff, feeds]

                if np.any(this_flag):

                    med, slow, shigh = utils.estimate_directional_scale(
                        amp[ff, feeds[this_flag]])
                    lower = med - config.nsigma_outlier * slow
                    upper = med + config.nsigma_outlier * shigh

                    flag[ff, feeds] &= ((amp[ff, feeds] >= lower) &
                                        (amp[ff, feeds] <= upper))

                    med_amp_by_pol[ff] = med
                    sig_amp_by_pol[ff] = 0.5 * (shigh - slow) / np.sqrt(
                        np.sum(this_flag, dtype=np.float32))

            if config.nsigma_med_outlier:

                med_flag = med_amp_by_pol > 0.0

                not_outlier = flag_outliers(med_amp_by_pol,
                                            med_flag,
                                            window=config.window_med_outlier,
                                            nsigma=config.nsigma_med_outlier)
                flag[:, feeds] &= not_outlier[:, np.newaxis]

                mlog.info("Pol %s:  %d frequencies are outliers." %
                          (polstr[pp],
                           np.sum(~not_outlier & med_flag, dtype=np.int)))

        # Determine bad frequencies
        flag_freq = (np.sum(flag, axis=1, dtype=np.float32) /
                     float(ninput)) > config.threshold_good_freq
        good_freq = np.flatnonzero(flag_freq)

        # Determine bad inputs
        fraction_good = np.sum(flag[good_freq, :], axis=0,
                               dtype=np.float32) / float(good_freq.size)
        flag_input = fraction_good > config.threshold_good_input

        # Finalize flag
        flag &= (flag_freq[:, np.newaxis] & flag_input[np.newaxis, :])

        # Interpolate gains
        interp_gain, interp_weight = interpolate_gain(
            freq,
            gain,
            results['weight'],
            flag=flag,
            length_scale=config.interpolation_length_scale,
            mlog=mlog)
        # Save gains to object
        results['flag'] = flag
        results['gain'] = interp_gain
        results['weight'] = interp_weight

    # Return results
    return results
Exemple #5
0
from sklearn.gaussian_process.kernels import Matern, ConstantKernel

import log

from pychfpga import NameSpace, load_yaml_config
from calibration import utils

from ch_util import andata, tools, ephemeris, timing
from ch_util.fluxcat import FluxCatalog

###################################################
# default variables
###################################################

DEFAULTS = NameSpace(
    load_yaml_config(
        os.path.join(os.path.dirname(os.path.realpath(__file__)),
                     'defaults.yaml') + ':point_source.analysis'))

LOG_FILE = os.environ.get(
    'CALIBRATION_LOG_FILE',
    os.path.join(os.path.dirname(os.path.realpath(__file__)),
                 'offline_cal.log'))

DEFAULT_LOGGING = {
    'formatters': {
        'std': {
            'format': "%(asctime)s %(levelname)s %(name)s: %(message)s",
            'datefmt': "%m/%d %H:%M:%S"
        },
    },
    'handlers': {
Exemple #6
0
def main(config_file=None, logging_params=DEFAULT_LOGGING):

    # Setup logging
    log.setup_logging(logging_params)
    mlog = log.get_logger(__name__)

    # Set config
    config = DEFAULTS.deepcopy()
    if config_file is not None:
        config.merge(NameSpace(load_yaml_config(config_file)))

    # Set niceness
    current_niceness = os.nice(0)
    os.nice(config.niceness - current_niceness)
    mlog.info('Changing process niceness from %d to %d.  Confirm:  %d' %
              (current_niceness, config.niceness, os.nice(0)))

    # Find acquisition files
    acq_files = sorted(glob(os.path.join(config.data_dir, config.acq, "*.h5")))
    nfiles = len(acq_files)

    # Determine time range of each file
    findex = []
    tindex = []
    for ii, filename in enumerate(acq_files):
        subdata = andata.CorrData.from_acq_h5(filename, datasets=())

        findex += [ii] * subdata.ntime
        tindex += range(subdata.ntime)

    findex = np.array(findex)
    tindex = np.array(tindex)

    # Determine transits within these files
    transits = []

    data = andata.CorrData.from_acq_h5(acq_files, datasets=())

    solar_rise = ephemeris.solar_rising(data.time[0] - 24.0 * 3600.0,
                                        end_time=data.time[-1])

    for rr in solar_rise:

        ss = ephemeris.solar_setting(rr)[0]

        solar_flag = np.flatnonzero((data.time >= rr) & (data.time <= ss))

        if solar_flag.size > 0:

            solar_flag = solar_flag[::config.downsample]

            tval = data.time[solar_flag]

            this_findex = findex[solar_flag]
            this_tindex = tindex[solar_flag]

            file_list, tindices = [], []

            for ii in range(nfiles):

                this_file = np.flatnonzero(this_findex == ii)

                if this_file.size > 0:

                    file_list.append(acq_files[ii])
                    tindices.append(this_tindex[this_file])

            date = ephemeris.unix_to_datetime(rr).strftime('%Y%m%dT%H%M%SZ')
            transits.append((date, tval, file_list, tindices))

    # Create file prefix and suffix
    prefix = []

    prefix.append("redundant_calibration")

    if config.output_prefix is not None:
        prefix.append(config.output_prefix)

    prefix = '_'.join(prefix)

    suffix = []

    if config.include_auto:
        suffix.append("wauto")
    else:
        suffix.append("noauto")

    if config.include_intracyl:
        suffix.append("wintra")
    else:
        suffix.append("nointra")

    if config.fix_degen:
        suffix.append("fixed_degen")
    else:
        suffix.append("degen")

    suffix = '_'.join(suffix)

    # Loop over solar transits
    for date, timestamps, files, time_indices in transits:

        nfiles = len(files)

        mlog.info("%s (%d files) " % (date, nfiles))

        output_file = os.path.join(config.output_dir,
                                   "%s_SUN_%s_%s.h5" % (prefix, date, suffix))

        mlog.info("Saving to:  %s" % output_file)

        # Get info about this set of files
        data = andata.CorrData.from_acq_h5(files,
                                           datasets=['flags/inputs'],
                                           apply_gain=False,
                                           renormalize=False)

        coord = sun_coord(timestamps, deg=True)

        fstart = config.freq_start if config.freq_start is not None else 0
        fstop = config.freq_stop if config.freq_stop is not None else data.freq.size
        freq_index = range(fstart, fstop)

        freq = data.freq[freq_index]

        ntime = timestamps.size
        nfreq = freq.size

        # Determind bad inputs
        if config.bad_input_file is None or not os.path.isfile(
                config.bad_input_file):
            bad_input = np.flatnonzero(
                ~np.all(data.flags['inputs'][:], axis=-1))
        else:
            with open(config.bad_input_file, 'r') as handler:
                bad_input = pickle.load(handler)

        mlog.info("%d inputs flagged as bad." % bad_input.size)

        nant = data.ninput

        # Determine polarization product maps
        dbinputs = tools.get_correlator_inputs(ephemeris.unix_to_datetime(
            timestamps[0]),
                                               correlator='chime')

        dbinputs = tools.reorder_correlator_inputs(data.input, dbinputs)

        feedpos = tools.get_feed_positions(dbinputs)

        prod = defaultdict(list)
        dist = defaultdict(list)

        for pp, this_prod in enumerate(data.prod):

            aa, bb = this_prod
            inp_aa = dbinputs[aa]
            inp_bb = dbinputs[bb]

            if (aa in bad_input) or (bb in bad_input):
                continue

            if not tools.is_chime(inp_aa) or not tools.is_chime(inp_bb):
                continue

            if not config.include_intracyl and (inp_aa.cyl == inp_bb.cyl):
                continue

            if not config.include_auto and (aa == bb):
                continue

            this_dist = list(feedpos[aa, :] - feedpos[bb, :])

            if tools.is_array_x(inp_aa) and tools.is_array_x(inp_bb):
                key = 'XX'

            elif tools.is_array_y(inp_aa) and tools.is_array_y(inp_bb):
                key = 'YY'

            elif not config.include_crosspol:
                continue

            elif tools.is_array_x(inp_aa) and tools.is_array_y(inp_bb):
                key = 'XY'

            elif tools.is_array_y(inp_aa) and tools.is_array_x(inp_bb):
                key = 'YX'

            else:
                raise RuntimeError("CHIME feeds not polarized.")

            prod[key].append(pp)
            dist[key].append(this_dist)

        polstr = sorted(prod.keys())
        polcnt = 0
        pol_sky_id = []
        bmap = {}
        for key in polstr:
            prod[key] = np.array(prod[key])
            dist[key] = np.array(dist[key])

            p_bmap, p_ubaseline = generate_mapping(dist[key])
            nubase = p_ubaseline.shape[0]

            bmap[key] = p_bmap + polcnt

            if polcnt > 0:

                ubaseline = np.concatenate((ubaseline, p_ubaseline), axis=0)
                pol_sky_id += [key] * nubase

            else:

                ubaseline = p_ubaseline.copy()
                pol_sky_id = [key] * nubase

            polcnt += nubase
            mlog.info("%d unique baselines" % polcnt)

        nsky = ubaseline.shape[0]

        # Create arrays to hold the results
        ores = {}
        ores['freq'] = freq
        ores['input'] = data.input
        ores['time'] = timestamps
        ores['coord'] = coord
        ores['pol'] = np.array(pol_sky_id)
        ores['baseline'] = ubaseline

        # Create array to hold gain results
        ores['gain'] = np.zeros((nfreq, nant, ntime), dtype=np.complex)
        ores['sky'] = np.zeros((nfreq, nsky, ntime), dtype=np.complex)
        ores['err'] = np.zeros((nfreq, nant + nsky, ntime, 2), dtype=np.float)

        # Loop over polarisations
        for key in polstr:

            reverse_map = bmap[key]
            p_prod = prod[key]

            isort = np.argsort(reverse_map)

            p_prod = p_prod[isort]

            p_ant1 = data.prod['input_a'][p_prod]
            p_ant2 = data.prod['input_b'][p_prod]
            p_vismap = reverse_map[isort]

            # Find the redundant groups
            tmp = np.where(np.diff(p_vismap) != 0)[0]
            edges = np.zeros(2 + tmp.size, dtype='int')
            edges[0] = 0
            edges[1:-1] = tmp + 1
            edges[-1] = p_vismap.size

            kept_base = np.unique(p_vismap)

            # Determine the unique antennas
            kept_ants = np.unique(np.concatenate([p_ant1, p_ant2]))
            antmap = np.zeros(kept_ants.max() + 1, dtype='int') - 1

            p_nant = kept_ants.size
            for i in range(p_nant):
                antmap[kept_ants[i]] = i

            p_ant1_use = antmap[p_ant1].copy()
            p_ant2_use = antmap[p_ant2].copy()

            # Create matrix
            p_nvis = p_prod.size
            nred = edges.size - 1

            npar = p_nant + nred

            A = np.zeros((p_nvis, npar), dtype=np.float32)
            B = np.zeros((p_nvis, npar), dtype=np.float32)

            for kk in range(p_nant):

                flag_ant1 = p_ant1_use == kk
                if np.any(flag_ant1):
                    A[flag_ant1, kk] = 1.0
                    B[flag_ant1, kk] = 1.0

                flag_ant2 = p_ant2_use == kk
                if np.any(flag_ant2):
                    A[flag_ant2, kk] = 1.0
                    B[flag_ant2, kk] = -1.0

            for ee in range(nred):

                A[edges[ee]:edges[ee + 1], p_nant + ee] = 1.0

                B[edges[ee]:edges[ee + 1], p_nant + ee] = 1.0

            # Add equations to break degeneracy
            if config.fix_degen:
                A = np.concatenate((A, np.zeros((1, npar), dtype=np.float32)))
                A[-1, 0:p_nant] = 1.0

                B = np.concatenate((B, np.zeros((3, npar), dtype=np.float32)))
                B[-3, 0:p_nant] = 1.0
                B[-2, 0:p_nant] = feedpos[kept_ants, 0]
                B[-1, 0:p_nant] = feedpos[kept_ants, 1]

            # Loop over frequencies
            for ff, find in enumerate(freq_index):

                mlog.info("Freq %d of %d.  %0.2f MHz." %
                          (ff + 1, nfreq, freq[ff]))

                cnt = 0

                # Loop over files
                for ii, (filename, tind) in enumerate(zip(files,
                                                          time_indices)):

                    ntind = len(tind)
                    mlog.info("Processing file %s (%d time samples)" %
                              (filename, ntind))

                    # Compute noise weight
                    with h5py.File(filename, 'r') as hf:
                        wnoise = np.median(hf['flags/vis_weight'][find, :, :],
                                           axis=-1)

                    # Loop over times
                    for tt in tind:

                        t0 = time.time()

                        mlog.info("Time %d of %d.  %d index of current file." %
                                  (cnt + 1, ntime, tt))

                        # Load visibilities
                        with h5py.File(filename, 'r') as hf:

                            snap = hf['vis'][find, :, tt]
                            wsnap = wnoise * (
                                (hf['flags/vis_weight'][find, :, tt] > 0.0) &
                                (np.abs(snap) > 0.0)).astype(np.float32)

                        # Extract relevant products for this polarization
                        snap = snap[p_prod]
                        wsnap = wsnap[p_prod]

                        # Turn into amplitude and phase, avoiding NaN
                        mask = (wsnap > 0.0)

                        amp = np.where(mask, np.log(np.abs(snap)), 0.0)
                        phi = np.where(mask, np.angle(snap), 0.0)

                        # Deal with phase wrapping
                        for aa, bb in zip(edges[:-1], edges[1:]):
                            dphi = phi[aa:bb] - np.sort(phi[aa:bb])[int(
                                (bb - aa) / 2)]
                            phi[aa:bb] += (2.0 * np.pi * (dphi < -np.pi) -
                                           2.0 * np.pi * (dphi > np.pi))

                        # Add elements to fix degeneracy
                        if config.fix_degen:
                            amp = np.concatenate((amp, np.zeros(1)))
                            phi = np.concatenate((phi, np.zeros(3)))

                        # Determine noise matrix
                        inv_diagC = wsnap * np.abs(snap)**2 * 2.0

                        if config.fix_degen:
                            inv_diagC = np.concatenate((inv_diagC, np.ones(1)))

                        # Amplitude estimate and covariance
                        amp_param_cov = np.linalg.inv(
                            np.dot(A.T, inv_diagC[:, np.newaxis] * A))
                        amp_param = np.dot(amp_param_cov,
                                           np.dot(A.T, inv_diagC * amp))

                        # Phase estimate and covariance
                        if config.fix_degen:
                            inv_diagC = np.concatenate((inv_diagC, np.ones(2)))

                        phi_param_cov = np.linalg.inv(
                            np.dot(B.T, inv_diagC[:, np.newaxis] * B))
                        phi_param = np.dot(phi_param_cov,
                                           np.dot(B.T, inv_diagC * phi))

                        # Save to large array
                        ores['gain'][ff, kept_ants,
                                     cnt] = np.exp(amp_param[0:p_nant] +
                                                   1.0J * phi_param[0:p_nant])

                        ores['sky'][ff, kept_base,
                                    cnt] = np.exp(amp_param[p_nant:] +
                                                  1.0J * phi_param[p_nant:])

                        ores['err'][ff, kept_ants, cnt,
                                    0] = np.diag(amp_param_cov[0:p_nant,
                                                               0:p_nant])
                        ores['err'][ff, nant + kept_base, cnt,
                                    0] = np.diag(amp_param_cov[p_nant:,
                                                               p_nant:])

                        ores['err'][ff, kept_ants, cnt,
                                    1] = np.diag(phi_param_cov[0:p_nant,
                                                               0:p_nant])
                        ores['err'][ff, nant + kept_base, cnt,
                                    1] = np.diag(phi_param_cov[p_nant:,
                                                               p_nant:])

                        # Increment time counter
                        cnt += 1

                        # Print time elapsed
                        mlog.info("Took %0.1f seconds." % (time.time() - t0, ))

        # Save to pickle file
        with h5py.File(output_file, 'w') as handler:

            handler.attrs['date'] = date

            for key, val in ores.iteritems():
                handler.create_dataset(key, data=val)
Exemple #7
0
def main(config_file=None, logging_params=DEFAULT_LOGGING):

    # Setup logging
    log.setup_logging(logging_params)
    mlog = log.get_logger(__name__)

    # Set config
    config = DEFAULTS.deepcopy()
    if config_file is not None:
        config.merge(NameSpace(load_yaml_config(config_file)))

    # Create transit tracker
    source_list = FluxCatalog.sort(
    ) if not config.source_list else config.source_list

    cal_list = [
        name for name, obj in FluxCatalog.iteritems()
        if (obj.dec >= config.min_dec) and (
            obj.predict_flux(config.freq_nominal) >= config.min_flux) and (
                name in source_list)
    ]

    if not cal_list:
        raise RuntimeError("No calibrators found.")

    # Sort list by flux at nominal frequency
    cal_list.sort(
        key=lambda name: FluxCatalog[name].predict_flux(config.freq_nominal))

    # Add to transit tracker
    transit_tracker = containers.TransitTrackerOffline(
        nsigma=config.nsigma_source, extend_night=config.extend_night)
    for name in cal_list:
        transit_tracker[name] = FluxCatalog[name].skyfield

    mlog.info("Initializing offline point source processing.")

    search_time = config.start_time or 0

    # Find all calibration files
    all_files = sorted(
        glob.glob(
            os.path.join(config.acq_dir,
                         '*' + config.correlator + config.acq_suffix, '*.h5')))
    if not all_files:
        return

    # Remove files whose last modified time is before the time of the most recent update
    all_files = [
        ff for ff in all_files if (os.path.getmtime(ff) > search_time)
    ]
    if not all_files:
        return

    # Remove files that are currently locked
    all_files = [
        ff for ff in all_files
        if not os.path.isfile(os.path.splitext(ff)[0] + '.lock')
    ]
    if not all_files:
        return

    # Add files to transit tracker
    for ff in all_files:
        transit_tracker.add_file(ff)

    # Extract point source transits ready for analysis
    all_transits = transit_tracker.get_transits()

    # Create dictionary to hold results
    h5_psrc_fit = {}
    inputmap = None

    # Loop over transits
    for transit in all_transits:

        src, csd, is_day, files, start, stop = transit

        # Discard any point sources with unusual csd value
        if (csd < config.min_csd) or (csd > config.max_csd):
            continue

        # Discard any point sources transiting during the day
        if is_day > config.process_daytime:
            continue

        mlog.info(
            'Processing %s transit on CSD %d (%d files, %d time samples)' %
            (src, csd, len(files), stop - start + 1))

        # Load inputmap
        if inputmap is None:
            if config.inputmap is None:
                inputmap = tools.get_correlator_inputs(
                    ephemeris.unix_to_datetime(ephemeris.csd_to_unix(csd)),
                    correlator=config.correlator)
            else:
                with open(config.inputmap, 'r') as handler:
                    inputmap = pickle.load(handler)

        # Grab the timing correction for this transit
        tcorr = None
        if config.apply_timing:

            if config.timing_glob is not None:

                mlog.info(
                    "Loading timing correction from extended timing solutions."
                )

                timing_files = sorted(glob.glob(config.timing_glob))

                if timing_files:

                    try:
                        tcorr = search_extended_timing_solutions(
                            timing_files, ephemeris.csd_to_unix(csd))

                    except Exception as e:
                        mlog.error(
                            'search_extended_timing_solutions failed with error: %s'
                            % e)

                    else:
                        mlog.info(str(tcorr))

            if tcorr is None:

                mlog.info(
                    "Loading timing correction from chimetiming acquisitions.")

                try:
                    tcorr = timing.load_timing_correction(
                        files,
                        start=start,
                        stop=stop,
                        window=config.timing_window,
                        instrument=config.correlator)
                except Exception as e:
                    mlog.error(
                        'timing.load_timing_correction failed with error: %s' %
                        e)
                    mlog.warning(
                        'No timing correction applied to %s transit on CSD %d.'
                        % (src, csd))
                else:
                    mlog.info(str(tcorr))

        # Call the main routine to process data
        try:
            outdct = offline_cal.offline_point_source_calibration(
                files,
                src,
                start=start,
                stop=stop,
                inputmap=inputmap,
                tcorr=tcorr,
                logging_params=logging_params,
                **config.analysis.as_dict())

        except Exception as e:
            msg = 'offline_cal.offline_point_source_calibration failed with error:  %s' % e
            mlog.error(msg)
            continue
            #raise RuntimeError(msg)

        # Find existing gain files for this particular point source
        if src not in h5_psrc_fit:

            output_files = find_files(config, psrc=src)
            if output_files is not None:
                output_files = output_files[-1]
                mlog.info('Writing %s transit on CSD %d to existing file %s.' %
                          (src, csd, output_files))

            h5_psrc_fit[src] = containers.PointSourceWriter(
                src,
                output_file=output_files,
                output_dir=config.output_dir,
                output_suffix=point_source_name_to_file_suffix(src),
                instrument=config.correlator,
                max_file_size=config.max_file_size,
                max_num=config.max_num_time,
                memory_size=0)

        # Associate this gain calibration to the transit time
        this_time = ephemeris.transit_times(FluxCatalog[src].skyfield,
                                            ephemeris.csd_to_unix(csd))[0]

        outdct['csd'] = csd
        outdct['is_daytime'] = is_day
        outdct['acquisition'] = os.path.basename(os.path.dirname(files[0]))

        # Write to output file
        mlog.info('Writing to disk results from %s transit on CSD %d.' %
                  (src, csd))
        h5_psrc_fit[src].write(this_time, **outdct)

        # Dump an individual file for this point source transit
        mlog.info('Dumping to disk single file for %s transit on CSD %d.' %
                  (src, csd))
        dump_dir = os.path.join(config.output_dir, 'point_source_gains')
        containers.mkdir(dump_dir)

        dump_file = os.path.join(dump_dir, '%s_csd_%d.h5' % (src.lower(), csd))
        h5_psrc_fit[src].dump(dump_file,
                              datasets=[
                                  'csd', 'acquisition', 'is_daytime', 'gain',
                                  'weight', 'timing', 'model'
                              ])

        mlog.info('Finished analysis of %s transit on CSD %d.' % (src, csd))
Exemple #8
0
def main(config_file=None, logging_params=DEFAULT_LOGGING):

    # Setup logging
    log.setup_logging(logging_params)
    mlog = log.get_logger(__name__)

    # Set config
    config = DEFAULTS.deepcopy()
    if config_file is not None:
        config.merge(NameSpace(load_yaml_config(config_file)))

    # Set niceness
    current_niceness = os.nice(0)
    os.nice(config.niceness - current_niceness)
    mlog.info('Changing process niceness from %d to %d.  Confirm:  %d' %
                  (current_niceness, config.niceness, os.nice(0)))

    # Create output suffix
    output_suffix = config.output_suffix if config.output_suffix is not None else "jumps"

    # Calculate the wavelet transform for the following scales
    nwin = 2 * config.max_scale + 1
    nhwin = nwin // 2

    if config.log_scale:
        mlog.info("Using log scale.")
        scale = np.logspace(np.log10(config.min_scale), np.log10(nwin), num=config.num_points, dtype=np.int)
    else:
        mlog.info("Using linear scale.")
        scale = np.arange(config.min_scale, nwin, dtype=np.int)

    # Loop over acquisitions
    for acq in config.acq:

        # Find acquisition files
        all_data_files = sorted(glob(os.path.join(config.data_dir, acq, "*.h5")))
        nfiles = len(all_data_files)

        if nfiles == 0:
            continue

        mlog.info("Now processing acquisition %s (%d files)" % (acq, nfiles))

        # Determine list of feeds to examine
        dset = ['flags/inputs'] if config.use_input_flag else ()

        rdr = andata.CorrData.from_acq_h5(all_data_files, datasets=dset,
                                          apply_gain=False, renormalize=False)

        inputmap = tools.get_correlator_inputs(ephemeris.unix_to_datetime(rdr.time[0]),
                                               correlator='chime')

        # Extract good inputs
        if config.use_input_flag:
            ifeed = np.flatnonzero((np.sum(rdr.flags['inputs'][:], axis=-1, dtype=np.int) /
                                     float(rdr.flags['inputs'].shape[-1])) > config.input_threshold)
        else:
            ifeed = np.array([ii for ii, inp in enumerate(inputmap) if tools.is_chime(inp)])

        ninp = len(ifeed)

        mlog.info("Processing %d feeds." % ninp)

        # Create list of candidates
        cfreq, cinput, ctime, cindex = [], [], [], []
        jump_flag, jump_time, jump_auto = [], [], []
        ncandidate = 0

        # Determine number of files to process at once
        if config.max_num_file is None:
            chunk_size = nfiles
        else:
            chunk_size = min(config.max_num_file, nfiles)

        # Loop over chunks of files
        for chnk, data_files in enumerate(chunks(all_data_files, chunk_size)):

            mlog.info("Now processing chunk %d (%d files)" % (chnk, len(data_files)))

            # Deteremine selections along the various axes
            rdr = andata.CorrData.from_acq_h5(data_files, datasets=())

            auto_sel = np.array([ii for ii, pp in enumerate(rdr.prod) if pp[0] == pp[1]])
            auto_sel = andata._convert_to_slice(auto_sel)

            if config.time_start is None:
                ind_start = 0
            else:
                time_start = ephemeris.datetime_to_unix(datetime.datetime(*config.time_start))
                ind_start = int(np.argmin(np.abs(rdr.time - time_start)))

            if config.time_stop is None:
                ind_stop = rdr.ntime
            else:
                time_stop = ephemeris.datetime_to_unix(datetime.datetime(*config.time_stop))
                ind_stop = int(np.argmin(np.abs(rdr.time - time_stop)))

            if config.freq_physical is not None:

                if hasattr(config.freq_physical, '__iter__'):
                    freq_physical = config.freq_physical
                else:
                    freq_physical = [config.freq_physical]

                freq_sel = [np.argmin(np.abs(ff - rdr.freq)) for ff in freq_physical]
                freq_sel = andata._convert_to_slice(freq_sel)

            else:
                fstart = config.freq_start if config.freq_start is not None else 0
                fstop = config.freq_stop if config.freq_stop is not None else rdr.freq.size
                freq_sel = slice(fstart, fstop)

            # Load autocorrelations
            t0 = time.time()
            data = andata.CorrData.from_acq_h5(data_files, datasets=['vis'], start=ind_start, stop=ind_stop,
                                                           freq_sel=freq_sel, prod_sel=auto_sel,
                                                           apply_gain=False, renormalize=False)

            mlog.info("Took %0.1f seconds to load autocorrelations." % (time.time() - t0,))

            # If first chunk, save the frequencies that are being used
            if not chnk:
                all_freq = data.freq.copy()

            # If requested do not consider data during day or near bright source transits
            flag_quiet = np.ones(data.ntime, dtype=np.bool)
            if config.ignore_sun:
                flag_quiet &= ~transit_flag('sun', data.time, freq=np.min(data.freq), pol='X', nsig=1.0)

            if config.only_quiet:
                flag_quiet &= ~daytime_flag(data.time)
                for ss in ["CYG_A", "CAS_A", "TAU_A", "VIR_A"]:
                    flag_quiet &= ~transit_flag(ss, data.time, freq=np.min(data.freq), pol='X', nsig=1.0)

            # Loop over frequencies
            for ff, freq in enumerate(data.freq):

                print_cnt = 0
                mlog.info("FREQ %d (%0.2f MHz)" % (ff, freq))

                auto = data.vis[ff, :, :].real

                fractional_auto = auto * tools.invert_no_zero(np.median(auto, axis=-1, keepdims=True)) - 1.0

                # Loop over inputs
                for ii in ifeed:

                    print_cnt += 1
                    do_print = not (print_cnt % 100)

                    if do_print:
                        mlog.info("INPUT %d" % ii)
                    t0 = time.time()

                    signal = fractional_auto[ii, :]

                    # Perform wavelet transform
                    coef, freqs = pywt.cwt(signal, scale, config.wavelet_name)

                    if do_print:
                        mlog.info("Took %0.1f seconds to perform wavelet transform." % (time.time() - t0,))
                    t0 = time.time()

                    # Find local modulus maxima
                    flg_mod_max, mod_max = mod_max_finder(scale, coef, threshold=config.thresh, search_span=config.search_span)

                    if do_print:
                        mlog.info("Took %0.1f seconds to find modulus maxima." % (time.time() - t0,))
                    t0 = time.time()

                    # Find persisent modulus maxima across scales
                    candidates, cmm, pdrift, start, stop, lbl = finger_finder(scale, flg_mod_max, mod_max,
                                                                              istart=max(config.min_rise - config.min_scale, 0),
                                                                              do_fill=False)

                    if do_print:
                        mlog.info("Took %0.1f seconds to find fingers." % (time.time() - t0,))
                    t0 = time.time()

                    if candidates is None:
                        continue

                    # Cut bad candidates
                    index_good_candidates = np.flatnonzero((scale[stop] >= config.max_scale) &
                                                            flag_quiet[candidates[start, np.arange(start.size)]] &
                                                            (pdrift <= config.psigma_max))

                    ngood = index_good_candidates.size

                    if ngood == 0:
                        continue

                    mlog.info("Input %d has %d jumps" % (ii, ngood))

                    # Add remaining candidates to list
                    ncandidate += ngood

                    cfreq += [freq] * ngood
                    cinput += [ii] * ngood

                    for igc in index_good_candidates:

                        icenter = candidates[start[igc], igc]

                        cindex.append(icenter)
                        ctime.append(data.time[icenter])

                        aa = max(0, icenter - nhwin)
                        bb = min(data.ntime, icenter + nhwin + 1)

                        ncut = bb - aa

                        temp_var = np.zeros(nwin, dtype=np.bool)
                        temp_var[0:ncut] = True
                        jump_flag.append(temp_var)

                        temp_var = np.zeros(nwin, dtype=data.time.dtype)
                        temp_var[0:ncut] = data.time[aa:bb].copy()
                        jump_time.append(temp_var)

                        temp_var = np.zeros(nwin, dtype=auto.dtype)
                        temp_var[0:ncut] = auto[ii, aa:bb].copy()
                        jump_auto.append(temp_var)


            # Garbage collect
            del data
            gc.collect()

        # If we found any jumps, write them to a file.
        if ncandidate > 0:

            output_file = os.path.join(config.output_dir, "%s_%s.h5" % (acq, output_suffix))

            mlog.info("Writing %d jumps to: %s" % (ncandidate, output_file))

            # Write to output file
            with h5py.File(output_file, 'w') as handler:

                handler.attrs['files'] = all_data_files
                handler.attrs['chan_id'] = ifeed
                handler.attrs['freq'] = all_freq

                index_map = handler.create_group('index_map')
                index_map.create_dataset('jump', data=np.arange(ncandidate))
                index_map.create_dataset('window', data=np.arange(nwin))

                ax = np.array(['jump'])

                dset = handler.create_dataset('freq', data=np.array(cfreq))
                dset.attrs['axis'] = ax

                dset = handler.create_dataset('input', data=np.array(cinput))
                dset.attrs['axis'] = ax

                dset = handler.create_dataset('time', data=np.array(ctime))
                dset.attrs['axis'] = ax

                dset = handler.create_dataset('time_index', data=np.array(cindex))
                dset.attrs['axis'] = ax


                ax = np.array(['jump', 'window'])

                dset = handler.create_dataset('jump_flag', data=np.array(jump_flag))
                dset.attrs['axis'] = ax

                dset = handler.create_dataset('jump_time', data=np.array(jump_time))
                dset.attrs['axis'] = ax

                dset = handler.create_dataset('jump_auto', data=np.array(jump_auto))
                dset.attrs['axis'] = ax

        else:
            mlog.info("No jumps found for %s acquisition." % acq)