Exemple #1
0
    def DrawCones(self, points, color, z=.3, n=10):
        for p in points[::n]:
            p.z += z
            cmesh = chrono.ChTriangleMeshConnected()
            if color == 'red':
                cmesh.LoadWavefrontMesh(
                    chrono.GetChronoDataFile("sensor/cones/red_cone.obj"),
                    False, True)
            elif color == 'green':
                cmesh.LoadWavefrontMesh(
                    chrono.GetChronoDataFile("sensor/cones/green_cone.obj"),
                    False, True)

            cshape = chrono.ChTriangleMeshShape()
            cshape.SetMesh(cmesh)
            cshape.SetName("Cone")
            cshape.SetStatic(True)

            cbody = chrono.ChBody()
            cbody.SetPos(p)
            cbody.AddAsset(cshape)
            cbody.SetBodyFixed(True)
            cbody.SetCollide(False)
            if color == 'red':
                cbody.AddAsset(chrono.ChColorAsset(1, 0, 0))
            elif color == 'green':
                cbody.AddAsset(chrono.ChColorAsset(0, 1, 0))

            self.system.Add(cbody)
    def __init__(self, filename, bounding_box=None):
        self.filename = filename

        # If bounding box is not passed in, calculate it
        if bounding_box == None:
            self.bounding_box = CalcBoundingBox()
        else:
            self.bounding_box = bounding_box

        self.mesh = chrono.ChTriangleMeshConnected()
        self.mesh.LoadWavefrontMesh(chrono.GetChronoDataFile(filename), False,
                                    True)
        self.shape = chrono.ChTriangleMeshShape()
        self.shape.SetMesh(self.mesh)
        self.shape.SetStatic(True)
        self.body = chrono.ChBody()
        self.body.AddAsset(self.shape)
        self.body.SetCollide(False)
        self.body.SetBodyFixed(True)

        self.scaled = False

        self.pos = chrono.ChVectorD()
        self.scale = 1
        self.ang = 0
    def __init__(self, filename, scale_range):
        self.filename = filename
        self.scale_range = scale_range
        self.ready = False

        self.mesh = chrono.ChTriangleMeshConnected()
        self.mesh.LoadWavefrontMesh(chrono.GetChronoDataFile(self.filename), True, True)

        self.shape = chrono.ChTriangleMeshShape()
        self.shape.SetMesh(self.mesh)
        self.shape.SetStatic(True)

        self.body = chrono.ChBody()
        self.body.AddAsset(self.shape)
        self.body.SetCollide(True)
        self.body.SetBodyFixed(True)

        surface_mat = chrono.ChMaterialSurfaceNSC()
        surface_mat.SetFriction(0.9)
        surface_mat.SetRestitution(0.01)

        self.body.GetCollisionModel().ClearModel()
        self.body.GetCollisionModel().AddTriangleMesh(surface_mat, self.mesh, False, False)
        self.body.GetCollisionModel().BuildModel()

        self.scale = 1
def load_chrono_terrain_from_json(system: 'WAChronoSystem', filename: str):
    """Load a ChTerrain from a json specification file

    Args:
        filename (str): the relative path to a terrain json file
        system (WAChronoSystem): the chrono system used to handle the terrain

    Returns:
        ChTerrain: The loaded terrain
    """
    j = _load_json(filename)

    # Validate the json file
    _check_field(j, 'Terrain', field_type=dict)

    t = j['Terrain']
    _check_field(t, 'Input File', field_type=str)
    _check_field(t, 'Texture', field_type=str, optional=True)

    terrain = veh.RigidTerrain(system._system, chrono.GetChronoDataFile(t['Input File']))  # noqa

    # Add texture to the terrain, if desired
    if 'Texture' in t:
        texture_filename = chrono.GetChronoDataFile(t['Texture'])

        vis_mat = chrono.ChVisualMaterial()
        vis_mat.SetKdTexture(texture_filename)
        vis_mat.SetSpecularColor(chrono.ChVectorF(0.0, 0.0, 0.0))
        vis_mat.SetFresnelMin(0)
        vis_mat.SetFresnelMax(0.1)

        patch_asset = terrain.GetPatches()[0].GetGroundBody().GetAssets()[0]
        patch_visual_asset = chrono.CastToChVisualization(patch_asset)
        patch_visual_asset.material_list.append(vis_mat)

    return terrain
Exemple #5
0
def make_mesh(filename,
              pos,
              fixed=False,
              collide=True,
              euler_angles=(0, 0, 0),
              color=(1., 1., 1.)):
    body = chrono.ChBodyEasyMesh(
        chrono.GetChronoDataFile(filename),  # mesh filename
        7000,  # density kg/m^3
        True,  # automatically compute mass and inertia
        True,  # visualize?>
        0.001,
        collide  # collide?
    )  # use mesh for collision?
    body.SetBodyFixed(fixed)
    body.SetPos(chrono.ChVectorD(*swap_yz(pos)))
    body.SetRot(chrono.Q_from_Euler123(chrono.ChVectorD(*euler_angles)))
    return body
    def window(self,
               arm1,
               arm2,
               print_time=False,
               timestep=0.005,
               headless=True):

        if not headless:
            self.window = chronoirr.ChIrrApp(
                self.system, self.name,
                chronoirr.dimension2du(1920,
                                       1080))  #Create window for visualization
            self.window.AddTypicalCamera(chronoirr.vector3df(1, 1, 2))
            self.window.AddTypicalLights()
            self.window.AddTypicalSky()
            self.window.AssetBindAll()
            self.window.AssetUpdateAll()
            self.window.SetTimestep(timestep)
            self.window.AddTypicalLogo(
                chrono.GetChronoDataFile('logo_pychrono_alpha.png'))

            while (self.window.GetDevice().run()
                   ):  #create a window and display simulation
                s = time.perf_counter()
                self.window.BeginScene()
                self.window.DrawAll()
                motor_torque(arm1)
                motor_torque(arm2)
                self.window.DoStep()
                print(arm1.arm_tip.GetPos())
                self.window.EndScene()
                if print_time == True:
                    print(time.perf_counter() - s)

        else:
            while (self.system.GetChTime() <
                   10):  #Run simulation without viewing
                motor_torque(arm1)
                motor_torque(arm2)
                self.system.DoStepDynamics(timestep)
                print(arm1.arm_tip.GetPos())
                if print_time == True:
                    print(time.perf_counter() - s)
Exemple #7
0
    def window(
        self,
        arm1,
        arm2,
        timestep,
        print_time=False,
        headless=True,
    ):

        if not headless:
            self.window = chronoirr.ChIrrApp(
                self.system, self.name,
                chronoirr.dimension2du(1920,
                                       1080))  #Create window for visualization
            self.window.AddTypicalCamera(chronoirr.vector3df(1, 1, 2))
            self.window.AddTypicalLights()
            self.window.AddTypicalSky()
            self.window.AssetBindAll()
            self.window.AssetUpdateAll()
            self.window.SetTimestep(timestep)
            self.window.AddTypicalLogo(
                chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
Exemple #8
0
def CreateTerrain(sys, length, width, height, offset):

    ground_mat = chrono.ChMaterialSurface.DefaultMaterial(
        sys.GetContactMethod())
    ground_mat.SetFriction(0.8)
    ground_mat.SetRestitution(0)

    if sys.GetContactMethod() == chrono.ChContactMethod_SMC:
        matSMC = chrono.CastToChMaterialSurfaceSMC(ground_mat)
        matSMC.SetYoungModulus(1e7)

    ground = robot.GetSystem().NewBody()
    ground.SetBodyFixed(True)
    ground.SetCollide(True)

    ground.GetCollisionModel().ClearModel()
    ground.GetCollisionModel().AddBox(
        ground_mat, length / 2, width / 2, 0.1,
        chrono.ChVectorD(offset, 0, height - 0.1))
    ground.GetCollisionModel().BuildModel()

    box = chrono.ChBoxShape()
    box.GetBoxGeometry().Size = chrono.ChVectorD(length / 2, width / 2, 0.1)
    box.GetBoxGeometry().Pos = chrono.ChVectorD(offset, 0, height - 0.1)
    ground.AddAsset(box)

    texture = chrono.ChTexture()
    texture.SetTextureFilename(
        chrono.GetChronoDataFile("textures/pinkwhite.png"))
    texture.SetTextureScale(10 * length, 10 * width)
    ground.AddAsset(texture)

    ground.AddAsset(chrono.ChColorAsset(0.8, 0.8, 0.8))

    sys.AddBody(ground)

    return ground
Exemple #9
0
   def __init__(self, render):

      self.animate = render
      self.observation_space = np.empty([30,])
      self.action_space = np.zeros([8,])
      self.info =  {}
    # ---------------------------------------------------------------------
    #
    #  Create the simulation system and add items
    #
      self.Xtarg = 1000.0
      self.Ytarg = 0.0
      self.d_old = np.linalg.norm(self.Xtarg + self.Ytarg)
      self.ant_sys = chrono.ChSystemNSC()

    # Set the default outward/inward shape margins for collision detection,
    # this is epecially important for very large or very small objects.
      chrono.ChCollisionModel.SetDefaultSuggestedEnvelope(0.001)
      chrono.ChCollisionModel.SetDefaultSuggestedMargin(0.001)

    #ant_sys.SetSolverType(chrono.ChSolver.Type_BARZILAIBORWEIN) # precise, more slow
      self.ant_sys.SetSolverMaxIterations(70)
      

      self.ant_material = chrono.ChMaterialSurfaceNSC()
      self.ant_material.SetFriction(0.5)
      self.ant_material.SetDampingF(0.2)
      self.ant_material.SetCompliance (0.0005)
      self.ant_material.SetComplianceT(0.0005)

      self.timestep = 0.01
      self.abdomen_x = 0.25
      self.abdomen_y = 0.25
      self.abdomen_z = 0.25

      self.leg_density = 250    # kg/m^3
      self.abdomen_density = 100
      self.abdomen_y0 = 0.4
      self.leg_length = 0.3
      self.leg_radius = 0.04
      self.ankle_angle = 60*(math.pi/180)
      self.ankle_length = 0.4
      self.ankle_radius = 0.04
      self.gain = 30

      self.abdomen_mass = self.abdomen_density * ((4/3)*chrono.CH_C_PI*self.abdomen_x*self.abdomen_y*self.abdomen_z)
      self.abdomen_inertia = chrono.ChVectorD((1/5)*self.abdomen_mass*(pow(self.abdomen_y,2)+pow(self.abdomen_z,2)),(1/5)*self.abdomen_mass*(pow(self.abdomen_x,2)+pow(self.abdomen_z,2)),(1/5)*self.abdomen_mass*(pow(self.abdomen_y,2)+pow(self.abdomen_x,2)))
      self.leg_mass = self.leg_density * self.leg_length * math.pi* pow (self.leg_radius,2)
      self.leg_inertia = chrono.ChVectorD(0.5*self.leg_mass*pow(self.leg_radius,2), (self.leg_mass/12)*(3*pow(self.leg_radius,2)+pow(self.leg_length,2)),(self.leg_mass/12)*(3*pow(self.leg_radius,2)+pow(self.leg_length,2)))
      self.ankle_mass = self.leg_density * self.ankle_length * math.pi* pow (self.ankle_radius,2)
      self.ankle_inertia = chrono.ChVectorD(0.5*self.ankle_mass*pow(self.ankle_radius,2), (self.ankle_mass/12)*(3*pow(self.ankle_radius,2)+pow(self.ankle_length,2)),(self.ankle_mass/12)*(3*pow(self.ankle_radius,2)+pow(self.ankle_length,2)))
      
      self.leg_limit = chrono.ChLinkLimit()
      self.ankle_limit = chrono.ChLinkLimit()
      self.leg_limit.SetRmax(math.pi/9)
      self.leg_limit.SetRmin(-math.pi/9)
      self.ankle_limit.SetRmax(math.pi/9)
      self.ankle_limit.SetRmin(-math.pi/9)
      
      if (self.animate) :
             self.myapplication = chronoirr.ChIrrApp(self.ant_sys)
             self.myapplication.AddShadowAll()
             self.myapplication.SetStepManage(True)
             self.myapplication.SetTimestep(self.timestep)
             self. myapplication.SetTryRealtime(True)  
             self.myapplication.AddTypicalSky()
             self.myapplication.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
             self.myapplication.AddTypicalCamera(chronoirr.vector3df(0,1.5,0))
             self.myapplication.AddLightWithShadow(chronoirr.vector3df(4,4,0),    # point
                                            chronoirr.vector3df(0,0,0),    # aimpoint
                                            20,                 # radius (power)
                                            1,9,               # near, far
                                            90)                # angle of FOV
Exemple #10
0
my_mesh.AddAsset(mvisualizebeamC)


# ---------------------------------------------------------------------
#
#  Create an Irrlicht application to visualize the system
#


# Create the Irrlicht visualization (open the Irrlicht device,
# bind a simple user interface, etc. etc.)
myapplication = chronoirr.ChIrrApp(my_system, 'Test FEA beams', chronoirr.dimension2du(1024,768))

#application.AddTypicalLogo()
myapplication.AddTypicalSky()
myapplication.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
myapplication.AddTypicalCamera(chronoirr.vector3df(0.1,0.1,0.2))
myapplication.AddTypicalLights()

# ==IMPORTANT!== Use this function for adding a ChIrrNodeAsset to all items
# in the system. These ChIrrNodeAsset assets are 'proxies' to the Irrlicht meshes.

myapplication.AssetBindAll()

# ==IMPORTANT!== Use this function for 'converting' into Irrlicht meshes the assets
# that you added to the bodies into 3D shapes, they can be visualized by Irrlicht!

myapplication.AssetUpdateAll()


# THE SOFT-REAL-TIME CYCLE
Exemple #11
0
    def __init__(self):
        ChronoBaseEnv.__init__(self)
        SetChronoDataDirectories()
        # Define action and observation space
        # They must be gym.spaces objects
        # Example when using discrete actions:
        #self.camera_width = 210
        self.camera_width = 80
        #self.camera_height = 160
        self.camera_height = 45
        self.action_space = spaces.Box(low=-1.0,
                                       high=1.0,
                                       shape=(2, ),
                                       dtype=np.float32)
        self.observation_space = spaces.Tuple((
            spaces.Box(low=0,
                       high=255,
                       shape=(self.camera_height, self.camera_width, 3),
                       dtype=np.uint8),  # camera
            spaces.Box(low=-100, high=100, shape=(5, ), dtype=np.float)))
        self.info = {"timeout": 10000.0}
        self.timestep = 5e-3
        # ---------------------------------------------------------------------
        #
        #  Create the simulation system and add items
        #
        self.timeend = 60
        self.opt_dist = 12
        self.dist_rad = 4
        # distance between vehicles along the Bezier parameter
        self.interval = 0.05
        self.control_frequency = 5
        # time needed by the leader to get to the end of the path
        self.leader_totalsteps = self.timeend / self.timestep
        self.terrain_model = veh.RigidTerrain.PatchType_BOX
        self.terrainHeight = 0  # terrain height (FLAT terrain only)
        self.terrainLength = 200.0  # size in X direction
        self.terrainWidth = 200.0  # size in Y direction
        self.obst_paths = [
            'sensor/offroad/rock1.obj', 'sensor/offroad/rock3.obj',
            'sensor/offroad/rock4.obj', 'sensor/offroad/rock5.obj',
            'sensor/offroad/tree1.obj', 'sensor/offroad/bush1.obj'
        ]
        self.vis_meshes = [
            chrono.ChTriangleMeshConnected()
            for i in range(len(self.obst_paths))
        ]
        for path, mesh in zip(self.obst_paths, self.vis_meshes):
            mesh.LoadWavefrontMesh(chrono.GetChronoDataFile(path), True, True)
        self.obst_bound = [
            getObstacleBoundaryDim(mesh) for mesh in self.vis_meshes
        ]
        self.trimeshes = []
        for vis_mesh in self.vis_meshes:
            trimesh_shape = chrono.ChTriangleMeshShape()
            trimesh_shape.SetMesh(vis_mesh)
            trimesh_shape.SetName("mesh_name")
            trimesh_shape.SetStatic(True)
            self.trimeshes.append(trimesh_shape)
        self.leaders = ghostLeaders(3, self.interval)
        self.origin = chrono.ChVectorD(
            -89.400, 43.070, 260.0)  # Origin being somewhere in Madison WI
        # Set the time response for steering and throttle inputs.
        # NOTE: this is not exact, since we do not render quite at the specified FPS.
        steering_time = 1.0
        # time to go from 0 to +1 (or from 0 to -1)
        throttle_time = .5
        # time to go from 0 to +1
        braking_time = 0.3
        # time to go from 0 to +1
        self.SteeringDelta = (self.timestep / steering_time)
        self.ThrottleDelta = (self.timestep / throttle_time)
        self.BrakingDelta = (self.timestep / braking_time)

        self.render_setup = False
        self.play_mode = False
        self.step_number = 0
Exemple #12
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    #  Create the M113 vehicle
    # ------------------------

    vehicle = veh.M113_Vehicle(False, veh.TrackShoeType_SINGLE_PIN,
                               veh.BrakeType_SIMPLE,
                               chrono.ChContactMethod_SMC,
                               veh.CollisionType_NONE)

    vehicle.Initialize(chrono.ChCoordsysD(initLoc, initRot))

    vehicle.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSprocketVisualizationType(veh.VisualizationType_MESH)
    vehicle.SetIdlerVisualizationType(veh.VisualizationType_MESH)
    vehicle.SetRoadWheelAssemblyVisualizationType(veh.VisualizationType_MESH)
    vehicle.SetRoadWheelVisualizationType(veh.VisualizationType_MESH)
    vehicle.SetTrackShoeVisualizationType(veh.VisualizationType_MESH)

    # Create the powertrain system
    # ----------------------------

    powertrain = veh.M113_SimpleCVTPowertrain("Powertrain")
    vehicle.InitializePowertrain(powertrain)

    # Create the terrain
    # ------------------

    terrain = veh.RigidTerrain(vehicle.GetSystem())
    if (contact_method == chrono.ChContactMethod_NSC):
        patch_mat = chrono.ChMaterialSurfaceNSC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
    elif (contact_method == chrono.ChContactMethod_SMC):
        patch_mat = chrono.ChMaterialSurfaceSMC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
        patch_mat.SetYoungModulus(2e7)
    patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                             chrono.ChVectorD(0, 0, 1), terrainLength,
                             terrainWidth)
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    patch.SetColor(chrono.ChColor(0.5, 0.8, 0.5))
    terrain.Initialize()

    # Create the vehicle Irrlicht interface
    # -------------------------------------

    app = veh.ChTrackedVehicleIrrApp(vehicle, 'M113',
                                     irr.dimension2du(1000, 800))

    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(30, -30, 100),
                         irr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Create the interactive driver system
    # ------------------------------------

    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    steering_time = 0.5  # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0  # time to go from 0 to +1
    braking_time = 0.3  # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    driver.Initialize()

    # Simulation loop
    # ---------------

    # Inter-module communication data
    shoe_forces_left = veh.TerrainForces(vehicle.GetNumTrackShoes(veh.LEFT))
    shoe_forces_right = veh.TerrainForces(vehicle.GetNumTrackShoes(veh.RIGHT))

    # Number of simulation steps between miscellaneous events
    render_steps = m.ceil(render_step_size / step_size)

    # Initialize simulation frame counter and simulation time
    step_number = 0

    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = vehicle.GetSystem().GetChTime()

        app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        vehicle.Synchronize(time, driver_inputs, shoe_forces_left,
                            shoe_forces_right)
        app.Synchronize("", driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        terrain.Advance(step_size)
        vehicle.Advance(step_size)
        app.Advance(step_size)

        # Increment frame number
        step_number += 1

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)

    return 0
    def reset(self):
        self.generate_track()

        self.vehicle = veh.Sedan()
        self.vehicle.SetContactMethod(chrono.ChMaterialSurface.NSC)
        self.vehicle.SetChassisCollisionType(veh.ChassisCollisionType_NONE)
        self.vehicle.SetChassisFixed(False)
        self.vehicle.SetInitPosition(
            chrono.ChCoordsysD(self.initLoc, self.initRot))
        self.vehicle.SetTireType(veh.TireModelType_RIGID)
        self.vehicle.SetTireStepSize(self.timestep)
        self.vehicle.Initialize()

        self.vehicle.SetChassisVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetWheelVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSuspensionVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSteeringVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetTireVisualizationType(veh.VisualizationType_PRIMITIVES)
        self.system = self.vehicle.GetSystem()
        self.chassis_body = self.vehicle.GetChassisBody()

        # Create contact model
        self.chassis_body.GetCollisionModel().ClearModel()
        size = chrono.ChVectorD(3, 2, 0.2)
        self.chassis_body.GetCollisionModel().AddBox(0.5 * size.x,
                                                     0.5 * size.y,
                                                     0.5 * size.z)
        self.chassis_body.GetCollisionModel().BuildModel()

        # Driver
        self.driver = Driver(self.vehicle.GetVehicle())

        # Throttle controller
        #self.throttle_controller = PIDThrottleController()
        #self.throttle_controller.SetGains(Kp=0.4, Ki=0, Kd=0)
        #self.throttle_controller.SetTargetSpeed(speed=self.target_speed)

        # Rigid terrain
        self.terrain = veh.RigidTerrain(self.system)
        patch = self.terrain.AddPatch(
            chrono.ChCoordsysD(chrono.ChVectorD(0, 0, self.terrainHeight - 5),
                               chrono.QUNIT),
            chrono.ChVectorD(self.terrainLength, self.terrainWidth, 10))
        patch.SetContactFrictionCoefficient(0.9)
        patch.SetContactRestitutionCoefficient(0.01)
        patch.SetContactMaterialProperties(2e7, 0.3)
        patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200,
                         200)
        patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
        self.terrain.Initialize()

        ground_body = patch.GetGroundBody()
        ground_asset = ground_body.GetAssets()[0]
        visual_asset = chrono.CastToChVisualization(ground_asset)
        vis_mat = chrono.ChVisualMaterial()
        vis_mat.SetKdTexture(chrono.GetChronoDataFile("concrete.jpg"))
        visual_asset.material_list.append(vis_mat)

        # create barriers
        self.barriers = []
        self.DrawBarriers(self.track.left.points)
        self.DrawBarriers(self.track.right.points)

        # Set the time response for steering and throttle inputs.
        # NOTE: this is not exact, since we do not render quite at the specified FPS.
        steering_time = 0.5
        # time to go from 0 to +1 (or from 0 to -1)
        throttle_time = 0.5
        # time to go from 0 to +1
        braking_time = 0.3
        # time to go from 0 to +1
        self.driver.SetSteeringDelta(self.timestep / steering_time)
        self.driver.SetThrottleDelta(self.timestep / throttle_time)
        self.driver.SetBrakingDelta(self.timestep / braking_time)

        self.manager = sens.ChSensorManager(self.system)
        self.manager.scene.AddPointLight(chrono.ChVectorF(100, 100, 100),
                                         chrono.ChVectorF(1, 1, 1), 500.0)
        self.manager.scene.AddPointLight(chrono.ChVectorF(-100, -100, 100),
                                         chrono.ChVectorF(1, 1, 1), 500.0)

        # -----------------------------------------------------
        # Create a self.camera and add it to the sensor manager
        # -----------------------------------------------------
        self.camera = sens.ChCameraSensor(
            self.chassis_body,  # body camera is attached to
            50,  # scanning rate in Hz
            chrono.ChFrameD(
                chrono.ChVectorD(1.5, 0, .875),
                chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0))),
            # offset pose
            self.camera_width,  # number of horizontal samples
            self.camera_height,  # number of vertical channels
            chrono.CH_C_PI / 2,  # horizontal field of view
            (self.camera_height / self.camera_width) * chrono.CH_C_PI /
            3.  # vertical field of view
        )
        self.camera.SetName("Camera Sensor")
        self.camera.FilterList().append(sens.ChFilterRGBA8Access())
        self.manager.AddSensor(self.camera)

        self.old_dist = self.track.center.calcDistance(
            self.chassis_body.GetPos())

        self.step_number = 0
        self.c_f = 0
        self.isdone = False
        self.render_setup = False
        if self.play_mode:
            self.render()

        return self.get_ob()
Exemple #14
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    #  Create the HMMWV vehicle, set parameters, and initialize
    my_hmmwv = veh.HMMWV_Full()
    my_hmmwv.SetContactMethod(contact_method)
    my_hmmwv.SetChassisFixed(False)
    my_hmmwv.SetInitPosition(
        chrono.ChCoordsysD(initLoc, chrono.ChQuaternionD(1, 0, 0, 0)))
    my_hmmwv.SetPowertrainType(powertrain_model)
    my_hmmwv.SetDriveType(drive_type)
    my_hmmwv.SetSteeringType(steering_type)
    my_hmmwv.SetTireType(tire_model)
    my_hmmwv.SetTireStepSize(tire_step_size)
    my_hmmwv.Initialize()

    my_hmmwv.SetChassisVisualizationType(chassis_vis_type)
    my_hmmwv.SetSuspensionVisualizationType(suspension_vis_type)
    my_hmmwv.SetSteeringVisualizationType(steering_vis_type)
    my_hmmwv.SetWheelVisualizationType(wheel_vis_type)
    my_hmmwv.SetTireVisualizationType(tire_vis_type)

    # Create the terrain

    terrain = veh.RigidTerrain(my_hmmwv.GetSystem())
    if (contact_method == chrono.ChContactMethod_NSC):
        patch_mat = chrono.ChMaterialSurfaceNSC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
    elif (contact_method == chrono.ChContactMethod_SMC):
        patch_mat = chrono.ChMaterialSurfaceSMC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
        patch_mat.SetYoungModulus(2e7)
    patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                             chrono.ChVectorD(0, 0, 1), 300, 50)
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
    terrain.Initialize()

    # Create the path-follower, cruise-control driver
    # Use a parameterized ISO double lane change (to left)
    path = veh.DoubleLaneChangePath(initLoc, 13.5, 4.0, 11.0, 50.0, True)
    driver = veh.ChPathFollowerDriver(my_hmmwv.GetVehicle(), path, "my_path",
                                      target_speed)
    driver.GetSteeringController().SetLookAheadDistance(5)
    driver.GetSteeringController().SetGains(0.8, 0, 0)
    driver.GetSpeedController().SetGains(0.4, 0, 0)
    driver.Initialize()

    # Create the vehicle Irrlicht interface
    app = veh.ChWheeledVehicleIrrApp(my_hmmwv.GetVehicle(), 'HMMWV',
                                     irr.dimension2du(1000, 800))
    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(-60, -30, 100),
                         irr.vector3df(60, 30, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(chrono.ChVectorD(0.0, 0.0, 1.75), 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Visualization of controller points (sentinel & target)
    ballS = app.GetSceneManager().addSphereSceneNode(0.1)
    ballT = app.GetSceneManager().addSphereSceneNode(0.1)
    ballS.getMaterial(0).EmissiveColor = irr.SColor(0, 255, 0, 0)
    ballT.getMaterial(0).EmissiveColor = irr.SColor(0, 0, 255, 0)

    # Simulation loop
    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = my_hmmwv.GetSystem().GetChTime()

        # End simulation
        if (time >= t_end):
            break

        # Update sentinel and target location markers for the path-follower controller.
        pS = driver.GetSteeringController().GetSentinelLocation()
        pT = driver.GetSteeringController().GetTargetLocation()
        ballS.setPosition(irr.vector3df(pS.x, pS.y, pS.z))
        ballT.setPosition(irr.vector3df(pT.x, pT.y, pT.z))

        # Draw scene
        app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        my_hmmwv.Synchronize(time, driver_inputs, terrain)
        app.Synchronize("", driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        terrain.Advance(step_size)
        my_hmmwv.Advance(step_size)
        app.Advance(step_size)

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)

    return 0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    step_size = 0.005

    sys = chrono.ChSystemNSC()
    sys.Set_G_acc(chrono.ChVectorD(0, 0, -9.81))
    sys.SetSolverType(chrono.ChSolver.Type_BARZILAIBORWEIN)
    sys.SetSolverMaxIterations(150)
    sys.SetMaxPenetrationRecoverySpeed(4.0)

    # Create the terrain
    terrain = veh.RigidTerrain(sys)
    patch_mat = chrono.ChMaterialSurfaceNSC()
    patch_mat.SetFriction(0.9)
    patch_mat.SetRestitution(0.01)
    patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                             chrono.ChVectorD(0, 0, 1), 200, 100)
    patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    terrain.Initialize()

    # Create and initialize the first vehicle
    hmmwv_1 = veh.HMMWV_Reduced(sys)
    hmmwv_1.SetInitPosition(
        chrono.ChCoordsysD(chrono.ChVectorD(0, -1.5, 1.0),
                           chrono.ChQuaternionD(1, 0, 0, 0)))
    hmmwv_1.SetPowertrainType(veh.PowertrainModelType_SIMPLE)
    hmmwv_1.SetDriveType(veh.DrivelineType_RWD)
    hmmwv_1.SetTireType(veh.TireModelType_RIGID)
    hmmwv_1.Initialize()
    hmmwv_1.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_1.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_1.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_1.SetWheelVisualizationType(veh.VisualizationType_NONE)
    hmmwv_1.SetTireVisualizationType(veh.VisualizationType_PRIMITIVES)

    driver_data_1 = veh.vector_Entry([
        veh.DataDriverEntry(0.0, 0.0, 0.0, 0.0),
        veh.DataDriverEntry(0.5, 0.0, 0.0, 0.0),
        veh.DataDriverEntry(0.7, 0.3, 0.7, 0.0),
        veh.DataDriverEntry(1.0, 0.3, 0.7, 0.0),
        veh.DataDriverEntry(3.0, 0.5, 0.1, 0.0)
    ])
    driver_1 = veh.ChDataDriver(hmmwv_1.GetVehicle(), driver_data_1)
    driver_1.Initialize()

    # Create and initialize the second vehicle
    hmmwv_2 = veh.HMMWV_Reduced(sys)
    hmmwv_2.SetInitPosition(
        chrono.ChCoordsysD(chrono.ChVectorD(7, 1.5, 1.0),
                           chrono.ChQuaternionD(1, 0, 0, 0)))
    hmmwv_2.SetPowertrainType(veh.PowertrainModelType_SIMPLE)
    hmmwv_2.SetDriveType(veh.DrivelineType_RWD)
    hmmwv_2.SetTireType(veh.TireModelType_RIGID)
    hmmwv_2.Initialize()
    hmmwv_2.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_2.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_2.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_2.SetWheelVisualizationType(veh.VisualizationType_NONE)
    hmmwv_2.SetTireVisualizationType(veh.VisualizationType_PRIMITIVES)

    driver_data_2 = veh.vector_Entry([
        veh.DataDriverEntry(0.0, 0.0, 0.0, 0.0),
        veh.DataDriverEntry(0.5, 0.0, 0.0, 0.0),
        veh.DataDriverEntry(0.7, -0.3, 0.7, 0.0),
        veh.DataDriverEntry(1.0, -0.3, 0.7, 0.0),
        veh.DataDriverEntry(3.0, -0.5, 0.1, 0.0)
    ])
    driver_2 = veh.ChDataDriver(hmmwv_2.GetVehicle(), driver_data_2)
    driver_2.Initialize()

    # Create the vehicle Irrlicht interface
    app = veh.ChWheeledVehicleIrrApp(hmmwv_1.GetVehicle(), 'Two Car Demo',
                                     irr.dimension2du(1000, 800))

    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(30, -30, 100),
                         irr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(chrono.ChVectorD(0.0, 0.0, 0.75), 6.0, 0.5)
    app.SetChaseCameraState(veh.ChChaseCamera.Track)
    app.SetChaseCameraPosition(chrono.ChVectorD(-15, 0, 2.0))
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Simulation loop
    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = hmmwv_1.GetSystem().GetChTime()

        app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Get driver inputs
        driver_inputs_1 = driver_1.GetInputs()
        driver_inputs_2 = driver_2.GetInputs()

        # Update modules (process inputs from other modules)
        driver_1.Synchronize(time)
        driver_2.Synchronize(time)
        hmmwv_1.Synchronize(time, driver_inputs_1, terrain)
        hmmwv_2.Synchronize(time, driver_inputs_2, terrain)
        terrain.Synchronize(time)
        app.Synchronize("", driver_inputs_1)

        # Advance simulation for one timestep for all modules
        driver_1.Advance(step_size)
        driver_2.Advance(step_size)
        hmmwv_1.Advance(step_size)
        hmmwv_2.Advance(step_size)
        terrain.Advance(step_size)
        app.Advance(step_size)

        # Advance state of entire system (containing both vehicles)
        sys.DoStepDynamics(step_size)

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)
    return 0
    def reset(self):
        del self.manager
        material = chrono.ChMaterialSurfaceNSC()
        self.vehicle = veh.HMMWV_Reduced()
        self.vehicle.SetContactMethod(chrono.ChContactMethod_NSC)
        self.vehicle.SetChassisCollisionType(
            veh.ChassisCollisionType_PRIMITIVES)

        self.vehicle.SetChassisFixed(False)
        self.vehicle.SetInitPosition(
            chrono.ChCoordsysD(self.initLoc, self.initRot))
        self.vehicle.SetPowertrainType(veh.PowertrainModelType_SHAFTS)
        self.vehicle.SetDriveType(veh.DrivelineType_AWD)
        #self.vehicle.SetSteeringType(veh.SteeringType_PITMAN_ARM)
        self.vehicle.SetTireType(veh.TireModelType_TMEASY)
        self.vehicle.SetTireStepSize(self.timestep)
        self.vehicle.Initialize()

        #self.vehicle.SetStepsize(self.timestep)
        if self.play_mode == True:
            self.vehicle.SetChassisVisualizationType(
                veh.VisualizationType_MESH)
            self.vehicle.SetWheelVisualizationType(veh.VisualizationType_MESH)
            self.vehicle.SetTireVisualizationType(veh.VisualizationType_MESH)
        else:
            self.vehicle.SetChassisVisualizationType(
                veh.VisualizationType_PRIMITIVES)
            self.vehicle.SetWheelVisualizationType(
                veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSuspensionVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSteeringVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.chassis_body = self.vehicle.GetChassisBody()
        self.chassis_body.GetCollisionModel().ClearModel()
        size = chrono.ChVectorD(3, 2, 0.2)
        self.chassis_body.GetCollisionModel().AddBox(material, 0.5 * size.x,
                                                     0.5 * size.y,
                                                     0.5 * size.z)
        self.chassis_body.GetCollisionModel().BuildModel()

        # Driver
        self.driver = veh.ChDriver(self.vehicle.GetVehicle())

        # Rigid terrain
        self.system = self.vehicle.GetSystem()
        self.terrain = veh.RigidTerrain(self.system)
        patch = self.terrain.AddPatch(
            material, chrono.ChVectorD(0, 0, self.terrainHeight - .5),
            chrono.VECT_Z, self.terrainLength, self.terrainWidth, 10)
        material.SetFriction(0.9)
        material.SetRestitution(0.01)
        #patch.SetContactMaterialProperties(2e7, 0.3)
        patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200,
                         200)
        patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
        self.terrain.Initialize()

        ground_body = patch.GetGroundBody()
        ground_asset = ground_body.GetAssets()[0]
        visual_asset = chrono.CastToChVisualization(ground_asset)
        vis_mat = chrono.ChVisualMaterial()
        vis_mat.SetKdTexture(chrono.GetChronoDataFile("concrete.jpg"))
        visual_asset.material_list.append(vis_mat)

        # create obstacles
        self.boxes = []
        for i in range(3):
            box = chrono.ChBodyEasyBox(2, 2, 10, 1000, True, True)
            box.SetPos(
                chrono.ChVectorD(25 + 25 * i,
                                 (np.random.rand(1)[0] - 0.5) * 10, .05))
            box.SetBodyFixed(True)
            box_asset = box.GetAssets()[0]
            visual_asset = chrono.CastToChVisualization(box_asset)

            vis_mat = chrono.ChVisualMaterial()
            vis_mat.SetAmbientColor(chrono.ChVectorF(0, 0, 0))
            vis_mat.SetDiffuseColor(chrono.ChVectorF(.2, .2, .9))
            vis_mat.SetSpecularColor(chrono.ChVectorF(.9, .9, .9))

            visual_asset.material_list.append(vis_mat)
            visual_asset.SetStatic(True)
            self.boxes.append(box)
            self.system.Add(box)

        # Set the time response for steering and throttle inputs.
        # NOTE: this is not exact, since we do not render quite at the specified FPS.
        steering_time = 1.0
        # time to go from 0 to +1 (or from 0 to -1)
        throttle_time = .5
        # time to go from 0 to +1
        braking_time = 0.3
        # time to go from 0 to +1
        self.SteeringDelta = (self.timestep / steering_time)
        self.ThrottleDelta = (self.timestep / throttle_time)
        self.BrakingDelta = (self.timestep / braking_time)

        self.manager = sens.ChSensorManager(self.system)
        self.manager.scene.AddPointLight(chrono.ChVectorF(100, 100, 100),
                                         chrono.ChVectorF(1, 1, 1), 4000.0)
        self.manager.scene.AddPointLight(chrono.ChVectorF(-100, -100, 100),
                                         chrono.ChVectorF(1, 1, 1), 4000.0)
        # ------------------------------------------------
        # Create a self.camera and add it to the sensor manager
        # ------------------------------------------------
        self.camera = sens.ChCameraSensor(
            self.chassis_body,  # body camera is attached to
            50,  # scanning rate in Hz
            chrono.ChFrameD(chrono.ChVectorD(1.5, 0, .875)),
            # offset pose
            self.camera_width,  # number of horizontal samples
            self.camera_height,  # number of vertical channels
            chrono.CH_C_PI / 3,  # horizontal field of view
            #(self.camera_height / self.camera_width) * chrono.CH_C_PI / 3.  # vertical field of view
        )
        self.camera.SetName("Camera Sensor")
        self.camera.PushFilter(sens.ChFilterRGBA8Access())
        self.manager.AddSensor(self.camera)
        # -----------------------------------------------------------------
        # Create a filter graph for post-processing the data from the lidar
        # -----------------------------------------------------------------

        self.d_old = np.linalg.norm(self.Xtarg + self.Ytarg)
        self.step_number = 0
        self.c_f = 0
        self.isdone = False
        self.render_setup = False
        if self.play_mode:
            self.render()

        return self.get_ob()
Exemple #17
0
    def __init__(self,
                 step_size,
                 system,
                 track,
                 vehicle,
                 terrain,
                 irrlicht=False,
                 obstacles=None,
                 opponents=None,
                 draw_barriers=False,
                 draw_cones=False,
                 draw_track=True,
                 bind_all=True,
                 pov=False,
                 camera_save=False):
        # Chrono parameters
        self.step_size = step_size
        self.irrlicht = irrlicht
        self.step_number = 0

        # Time interval between two render frames
        self.render_step_size = 1.0 / 60  # FPS = 60
        self.render_steps = int(
            math.ceil(self.render_step_size / self.step_size))

        # Track that vehicle is going through
        self.track = track

        # Static obstacles in the environment
        self.obstacles = obstacles

        # Dynamic opponents in the environment
        self.opponents = opponents

        self.system = system
        self.vehicle = vehicle
        self.terrain = terrain

        if self.irrlicht:
            if draw_track:
                self.DrawPath(track.center)

        if obstacles != None:
            self.DrawObstacles(obstacles)

        if opponents != None:
            temp = dict()
            for opponent in opponents:
                temp[opponent] = (opponent.vehicle, opponent.vehicle.driver)
            self.opponents = temp

        if draw_barriers:
            self.DrawBarriers(self.track.left.points)
            self.DrawBarriers(self.track.right.points)
        if draw_cones:
            self.DrawCones(self.track.left.points, 'red')
            self.DrawCones(self.track.right.points, 'green')

        if self.irrlicht and bind_all:
            self.app = veh.ChVehicleIrrApp(self.vehicle.vehicle)
            self.app.SetHUDLocation(500, 20)
            self.app.SetSkyBox()
            self.app.AddTypicalLogo()
            self.app.AddTypicalLights(chronoirr.vector3df(-150., -150., 200.),
                                      chronoirr.vector3df(-150., 150., 200.),
                                      100, 100)
            self.app.AddTypicalLights(chronoirr.vector3df(150., -150., 200.),
                                      chronoirr.vector3df(150., 150., 200.),
                                      100, 100)
            self.app.EnableGrid(False)
            self.app.SetChaseCamera(self.vehicle.trackPoint, 6.0, 0.5)

            self.app.SetTimestep(self.step_size)
            # ---------------------------------------------------------------------
            #
            #  Create an Irrlicht application to visualize the system
            #
            # ==IMPORTANT!== Use this function for adding a ChIrrNodeAsset to all items
            # in the system. These ChIrrNodeAsset assets are 'proxies' to the Irrlicht meshes.
            # If you need a finer control on which item really needs a visualization proxy
            # Irrlicht, just use application.AssetBind(myitem); on a per-item basis.

            self.app.AssetBindAll()

            # ==IMPORTANT!== Use this function for 'converting' into Irrlicht meshes the assets
            # that you added to the bodies into 3D shapes, they can be visualized by Irrlicht!

            self.app.AssetUpdateAll()

        self.pov = pov
        if self.pov:
            self.pov_exporter = postprocess.ChPovRay(self.system)

            # Sets some file names for in-out processes.
            self.pov_exporter.SetTemplateFile(
                chrono.GetChronoDataFile('_template_POV.pov'))
            self.pov_exporter.SetOutputScriptFile("rendering_frames.pov")
            if not os.path.exists("output"):
                os.mkdir("output")
            if not os.path.exists("anim"):
                os.mkdir("anim")
            self.pov_exporter.SetOutputDataFilebase("output/my_state")
            self.pov_exporter.SetPictureFilebase("anim/picture")

            self.pov_exporter.SetCamera(chrono.ChVectorD(0.2, 0.3, 0.5),
                                        chrono.ChVectorD(0, 0, 0), 35)
            self.pov_exporter.SetLight(chrono.ChVectorD(-2, 2, -1),
                                       chrono.ChColor(1.1, 1.2, 1.2), True)
            self.pov_exporter.SetPictureSize(1280, 720)
            self.pov_exporter.SetAmbientLight(chrono.ChColor(2, 2, 2))

            # Add additional POV objects/lights/materials in the following way
            self.pov_exporter.SetCustomPOVcommandsScript('''
            light_source{ <1,3,1.5> color rgb<1.1,1.1,1.1> }
            Grid(0.05,0.04, rgb<0.7,0.7,0.7>, rgbt<1,1,1,1>)
            ''')

            # Tell which physical items you want to render
            self.pov_exporter.AddAll()

            # Tell that you want to render the contacts
            # self.pov_exporter.SetShowContacts(True,
            #                             postprocess.ChPovRay.SYMBOL_VECTOR_SCALELENGTH,
            #                             0.2,    # scale
            #                             0.0007, # width
            #                             0.1,    # max size
            #                             True,0,0.5 ) # colormap on, blue at 0, red at 0.5

            # 1) Create the two .pov and .ini files for POV-Ray (this must be done
            #    only once at the beginning of the simulation).
            self.pov_exporter.ExportScript()
Exemple #18
0
# Initialize Robosimian robot

##robot.Initialize(ChCoordsys<>(chrono.ChVectorD(0, 0, 0), QUNIT))
robot.Initialize(
    chrono.ChCoordsysD(chrono.ChVectorD(0, 0, 0),
                       chrono.Q_from_AngX(chrono.CH_C_PI)))

# -----------------------------------
# Create a driver and attach to robot
# -----------------------------------

if mode == robosimian.LocomotionMode_WALK:
    driver = robosimian.RS_Driver(
        "",  # start input file
        chrono.GetChronoDataFile("robot/robosimian/actuation/walking_cycle.txt"
                                 ),  # cycle input file
        "",  # stop input file
        True)
elif mode == robosimian.LocomotionMode_SCULL:
    driver = robosimian.RS_Driver(
        chrono.GetChronoDataFile(
            "robot/robosimian/actuation/sculling_start.txt"
        ),  # start input file
        chrono.GetChronoDataFile(
            "robot/robosimian/actuation/sculling_cycle2.txt"
        ),  # cycle input file
        chrono.GetChronoDataFile(
            "robot/robosimian/actuation/sculling_stop.txt"),  # stop input file
        True)

elif mode == robosimian.LocomotionMode_INCHWORM:
    def reset(self):
        n = 10
        b1 = 0
        b2 = 0
        r1 = n
        r2 = n
        r3 = n
        r4 = n
        r5 = n
        t1 = 0
        t2 = 0
        t3 = 0
        c = 0
        self.assets = AssetList(b1, b2, r1, r2, r3, r4, r5, t1, t2, t3, c)
        # Create systems
        self.system = chrono.ChSystemNSC()
        self.system.Set_G_acc(chrono.ChVectorD(0, 0, -9.81))
        self.system.SetSolverType(chrono.ChSolver.Type_BARZILAIBORWEIN)
        self.system.SetSolverMaxIterations(150)
        self.system.SetMaxPenetrationRecoverySpeed(4.0)

        # Create the terrain
        rigid_terrain = False
        # Ghost Terrain: rigid, vis, no contact
        self.ghost_terrain = veh.RigidTerrain(self.system)
        patch_mat = chrono.ChMaterialSurfaceNSC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
        # Real Terrain: deformable, no vis, contact
        self.terrain = veh.SCMDeformableTerrain(self.system, False)
        # Parameters
        randpar = random.randint(1, 6)
        params = SCMParameters()
        params.InitializeParametersAsHard()
        params.SetParameters(self.terrain)
        # Bulldozing
        self.terrain.EnableBulldozing(True)
        self.terrain.SetBulldozingParameters(
            55,  # angle of friction for erosion of displaced material at the border of the rut
            1,  # displaced material vs downward pressed material.
            5,  # number of erosion refinements per timestep
            10)  # number of concentric vertex selections subject to erosion

        self.bitmap_file = os.path.dirname(os.path.realpath(__file__)) + "/../../utils/height_map.bmp"
        self.bitmap_file_backup = os.path.dirname(os.path.realpath(__file__)) + "/../../utils/height_map_backup.bmp"
        shape = (252, 252)
        generate_random_bitmap(shape=shape, resolutions=[(2, 2)], mappings=[(-1.5, 1.5)], file_name=self.bitmap_file)
        try:
            patch = self.ghost_terrain.AddPatch(patch_mat,
                                          chrono.CSYSNORM,  # position
                                          self.bitmap_file,  # heightmap file (.bmp)
                                          "test",  # mesh name
                                          self.terrain_length * 1.5,  # sizeX
                                          self.terrain_width * 1.5,  # sizeY
                                          self.min_terrain_height,  # hMin
                                          self.max_terrain_height)  # hMax
            self.terrain.Initialize(self.bitmap_file,  # heightmap file (.bmp)
                                    self.terrain_length * 1.5,  # sizeX
                                    self.terrain_width * 1.5,  # sizeY
                                    self.min_terrain_height,  # hMin
                                    self.max_terrain_height,  # hMax
                                    0.05)  # Delta

        except Exception:
            print('Corrupt Bitmap File')
            patch = self.ghost_terrain.AddPatch(patch_mat,
                                          chrono.CSYSNORM,  # position
                                          self.bitmap_file_backup,  # heightmap file (.bmp)
                                          "test",  # mesh name
                                          self.terrain_length * 1.5,  # sizeX
                                          self.terrain_width * 1.5,  # sizeY
                                          self.min_terrain_height,  # hMin
                                          self.max_terrain_height)  # hMax
            self.terrain.Initialize(self.bitmap_file_backup,  # heightmap file (.bmp)
                                    self.terrain_length * 1.5,  # sizeX
                                    self.terrain_width * 1.5,  # sizeY
                                    self.min_terrain_height,  # hMin
                                    self.max_terrain_height,  # hMax
                                    0.05)

        patch.SetTexture(veh.GetDataFile("terrain/textures/grass.jpg"), 200, 200)
        patch.SetColor(chrono.ChColor(1.0, 1.0, 1.0))
        self.ghost_terrain.Initialize()
        ground_body = patch.GetGroundBody()
        ground_body.SetCollide(False)
        ground_asset = ground_body.GetAssets()[0]
        visual_asset = chrono.CastToChVisualization(ground_asset)
        visual_asset.SetStatic(True)
        vis_mat = chrono.ChVisualMaterial()
        tex = np.random.randint(1,6)
        if tex%2 == 0 and tex%5 != 0 :
            vis_mat.SetKdTexture(veh.GetDataFile("terrain/textures/grass.jpg"))
        elif tex%2 == 1 and tex%5 != 0 :
            vis_mat.SetKdTexture(chrono.GetChronoDataFile("sensor/textures/grass_texture.jpg"))
        visual_asset.material_list.append(vis_mat)

        theta = random.random() * 2 * np.pi
        x, y = self.terrain_length * 0.5 * np.cos(theta), self.terrain_width * 0.5 * np.sin(theta)
        z = self.terrain.GetHeight(chrono.ChVectorD(x, y, 0)) + 0.25
        ang = np.pi + theta
        self.initLoc = chrono.ChVectorD(x, y, z)
        self.initRot = chrono.Q_from_AngZ(ang)

        self.vehicle = veh.Gator(self.system)
        self.vehicle.SetContactMethod(chrono.ChContactMethod_NSC)
        self.vehicle.SetChassisCollisionType(veh.ChassisCollisionType_NONE)
        self.vehicle.SetChassisFixed(False)
        self.m_inputs = veh.Inputs()
        self.vehicle.SetInitPosition(chrono.ChCoordsysD(self.initLoc, self.initRot))
        self.vehicle.SetTireType(veh.TireModelType_RIGID_MESH)
        self.vehicle.SetTireStepSize(self.timestep)
        self.vehicle.Initialize()

        if self.play_mode:
            self.vehicle.SetChassisVisualizationType(veh.VisualizationType_MESH)
            self.vehicle.SetWheelVisualizationType(veh.VisualizationType_MESH)
            self.vehicle.SetTireVisualizationType(veh.VisualizationType_MESH)
        else:
            self.vehicle.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
            self.vehicle.SetWheelVisualizationType(veh.VisualizationType_PRIMITIVES)
            self.vehicle.SetTireVisualizationType(veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
        self.chassis_body = self.vehicle.GetChassisBody()
        # self.chassis_body.GetCollisionModel().ClearModel()
        # size = chrono.ChVectorD(3,2,0.2)
        # self.chassis_body.GetCollisionModel().AddBox(0.5 * size.x, 0.5 * size.y, 0.5 * size.z)
        # self.chassis_body.GetCollisionModel().BuildModel()
        self.chassis_collision_box = chrono.ChVectorD(3, 2, 0.2)

        # Driver
        self.driver = veh.ChDriver(self.vehicle.GetVehicle())

        # create goal
        # pi/4 ang displ
        delta_theta = (random.random() - 0.5) * 1.0 * np.pi
        gx, gy = self.terrain_length * 0.5 * np.cos(theta + np.pi + delta_theta), self.terrain_width * 0.5 * np.sin(
            theta + np.pi + delta_theta)
        self.goal = chrono.ChVectorD(gx, gy, self.terrain.GetHeight(chrono.ChVectorD(gx, gy, 0)) + 1.0)

        i = 0
        while (self.goal - self.initLoc).Length() < 15:
            gx = random.random() * self.terrain_length - self.terrain_length / 2
            gy = random.random() * self.terrain_width - self.terrain_width / 2
            self.goal = chrono.ChVectorD(gx, gy, self.max_terrain_height + 1)
            if i > 100:
                print('Break')
                break
            i += 1

        # self.goal = chrono.ChVectorD(75, 0, 0)
        # Origin in Madison WI
        self.origin = chrono.ChVectorD(43.073268, -89.400636, 260.0)
        self.goal_coord = chrono.ChVectorD(self.goal)
        sens.Cartesian2GPS(self.goal_coord, self.origin)

        self.goal_sphere = chrono.ChBodyEasySphere(.55, 1000, True, False)
        self.goal_sphere.SetBodyFixed(True)

        sphere_asset = self.goal_sphere.GetAssets()[0]
        visual_asset = chrono.CastToChVisualization(sphere_asset)

        vis_mat = chrono.ChVisualMaterial()
        vis_mat.SetAmbientColor(chrono.ChVectorF(0, 0, 0))
        vis_mat.SetDiffuseColor(chrono.ChVectorF(.2, .2, .9))
        vis_mat.SetSpecularColor(chrono.ChVectorF(.9, .9, .9))

        visual_asset.material_list.append(vis_mat)
        visual_asset.SetStatic(True)

        self.goal_sphere.SetPos(self.goal)
        if self.play_mode:
            self.system.Add(self.goal_sphere)

        # create obstacles
        # start = t.time()
        self.assets.Clear()
        self.assets.RandomlyPositionAssets(self.system, self.initLoc, self.goal, self.terrain,
                                           self.terrain_length * 1.5, self.terrain_width * 1.5, should_scale=False)

        # Set the time response for steering and throttle inputs.
        # NOTE: this is not exact, since we do not render quite at the specified FPS.
        steering_time = 0.75
        # time to go from 0 to +1 (or from 0 to -1)
        throttle_time = .5
        # time to go from 0 to +1
        braking_time = 0.3
        # time to go from 0 to +1
        self.SteeringDelta = (self.timestep / steering_time)
        self.ThrottleDelta = (self.timestep / throttle_time)
        self.BrakingDelta = (self.timestep / braking_time)

        self.manager = sens.ChSensorManager(self.system)
        self.manager.scene.AddPointLight(chrono.ChVectorF(100, 100, 100), chrono.ChVectorF(1, 1, 1), 5000.0)
        self.manager.scene.AddPointLight(chrono.ChVectorF(-100, -100, 100), chrono.ChVectorF(1, 1, 1), 5000.0)
        # Let's not, for the moment, give a different scenario during test
        """
        if self.play_mode:
            self.manager.scene.GetBackground().has_texture = True;
            self.manager.scene.GetBackground().env_tex = "sensor/textures/qwantani_8k.hdr"
            self.manager.scene.GetBackground().has_changed = True;
        """
        # -----------------------------------------------------
        # Create a self.camera and add it to the sensor manager
        # -----------------------------------------------------
        #chrono.ChFrameD(chrono.ChVectorD(1.5, 0, .875), chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0))),
        self.camera = sens.ChCameraSensor(
            self.chassis_body,  # body camera is attached to
            20,  # scanning rate in Hz
            chrono.ChFrameD(chrono.ChVectorD(.65, 0, .75), chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0))),
            # offset pose
            self.camera_width,  # number of horizontal samples
            self.camera_height,  # number of vertical channels
            chrono.CH_C_PI / 2,  # horizontal field of view
            6  # supersampling factor
        )
        self.camera.SetName("Camera Sensor")
        self.camera.PushFilter(sens.ChFilterRGBA8Access())
        #if self.play_mode:
        #    self.camera.PushFilter(sens.ChFilterVisualize(self.camera_width, self.camera_height, "RGB Camera"))
        self.manager.AddSensor(self.camera)

        # -----------------------------------------------------
        # Create a self.gps and add it to the sensor manager
        # -----------------------------------------------------
        gps_noise_none = sens.ChGPSNoiseNone()
        self.gps = sens.ChGPSSensor(
            self.chassis_body,
            15,
            chrono.ChFrameD(chrono.ChVectorD(0, 0, 0), chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0))),
            self.origin,
            gps_noise_none
        )
        self.gps.SetName("GPS Sensor")
        self.gps.PushFilter(sens.ChFilterGPSAccess())
        self.manager.AddSensor(self.gps)

        # have to reconstruct scene because sensor loads in meshes separately (ask Asher)
        # start = t.time()
        if self.assets.GetNum() > 0:
            # self.assets.TransformAgain()
            # start = t.time()
            for asset in self.assets.assets:
                if len(asset.frames) > 0:
                    self.manager.AddInstancedStaticSceneMeshes(asset.frames, asset.mesh.shape)
            # self.manager.ReconstructScenes()
            # self.manager.AddInstancedStaticSceneMeshes(self.assets.frames, self.assets.shapes)
            # self.manager.Update()

        self.old_dist = (self.goal - self.initLoc).Length()

        self.step_number = 0
        self.c_f = 0
        self.old_ac = 0
        self.isdone = False
        self.render_setup = False
        self.dist0 = (self.goal - self.chassis_body.GetPos()).Length()
        if self.play_mode:
            self.render()

        return self.get_ob()
        body_brick_shape.GetBoxGeometry().Size = chrono.ChVectorD(
            0.01, 0.01, 0.01)
        body_brick.GetAssets().push_back(body_brick_shape)

        my_system.Add(body_brick)

# ---------------------------------------------------------------------
#
#  Render a short animation by generating scripts
#  to be used with POV-Ray
#

pov_exporter = postprocess.ChPovRay(my_system)

# Sets some file names for in-out processes.
pov_exporter.SetTemplateFile(chrono.GetChronoDataFile('_template_POV.pov'))
pov_exporter.SetOutputScriptFile("rendering_frames.pov")
if not os.path.exists("output"):
    os.mkdir("output")
if not os.path.exists("anim"):
    os.mkdir("anim")
pov_exporter.SetOutputDataFilebase("output/my_state")
pov_exporter.SetPictureFilebase("anim/picture")

pov_exporter.SetCamera(chrono.ChVectorD(0.2, 0.3, 0.5),
                       chrono.ChVectorD(0, 0, 0), 35)
pov_exporter.SetLight(chrono.ChVectorD(-2, 2, -1),
                      chrono.ChColor(1.1, 1.2, 1.2), True)
pov_exporter.SetPictureSize(640, 480)
pov_exporter.SetAmbientLight(chrono.ChColor(2, 2, 2))
Exemple #21
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    # Create systems

    #  Create the FEDA vehicle, set parameters, and initialize
    my_feda = veh.FEDA()
    my_feda.SetContactMethod(contact_method)
    my_feda.SetChassisCollisionType(chassis_collision_type)
    my_feda.SetChassisFixed(False)
    my_feda.SetInitPosition(chrono.ChCoordsysD(initLoc, initRot))
    my_feda.SetPowertrainType(powertrain_model)
    my_feda.SetTireType(tire_model)
    my_feda.SetTireStepSize(tire_step_size)
    my_feda.Initialize()

    my_feda.SetChassisVisualizationType(chassis_vis_type)
    my_feda.SetSuspensionVisualizationType(suspension_vis_type)
    my_feda.SetSteeringVisualizationType(steering_vis_type)
    my_feda.SetWheelVisualizationType(wheel_vis_type)
    my_feda.SetTireVisualizationType(tire_vis_type)

    # Create the terrain

    terrain = veh.RigidTerrain(my_feda.GetSystem())
    if (contact_method == chrono.ChContactMethod_NSC):
        patch_mat = chrono.ChMaterialSurfaceNSC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
    elif (contact_method == chrono.ChContactMethod_SMC):
        patch_mat = chrono.ChMaterialSurfaceSMC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
        patch_mat.SetYoungModulus(2e7)
    patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                             chrono.ChVectorD(0, 0, 1), terrainLength,
                             terrainWidth)
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
    terrain.Initialize()

    # Create the vehicle Irrlicht interface
    app = veh.ChWheeledVehicleIrrApp(my_feda.GetVehicle(), 'HMMWV',
                                     irr.dimension2du(1000, 800))

    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(30, -30, 100),
                         irr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Create the interactive driver system
    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    steering_time = 1.0  # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0  # time to go from 0 to +1
    braking_time = 0.3  # time to go from 0 to +1
    driver.SetSteeringDelta(10 * step_size / steering_time)
    driver.SetThrottleDelta(10 * step_size / throttle_time)
    driver.SetBrakingDelta(10 * step_size / braking_time)

    driver.Initialize()

    # Simulation loop
    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = my_feda.GetSystem().GetChTime()

        app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        my_feda.Synchronize(time, driver_inputs, terrain)
        app.Synchronize(driver.GetInputModeAsString(), driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        terrain.Advance(step_size)
        my_feda.Advance(step_size)
        app.Advance(step_size)

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)

    return 0
Exemple #22
0
    def __init__(self, step_size, sys, irrlicht=False, terrain_type='json', height=-0.5, width=300, length=300):
        # Chrono parameters
        self.step_size = step_size
        self.irrlicht = irrlicht
        self.step_number = 0

        # Rigid terrain dimensions
        self.height = height
        self.length = length  # size in X direction
        self.width = width  # size in Y direction

        self.sys = sys

        if terrain_type == 'json':
            import os
            # JSON files for terrain
            self.rigidterrain_file = veh.GetDataPath() + os.path.join('terrain', 'RigidPlane.json')
            checkFile(self.rigidterrain_file)

            # Create the ground
            self.terrain = veh.RigidTerrain(self.sys, self.rigidterrain_file)

        elif terrain_type == 'concrete':
            # Create the terrain
            self.terrain = veh.RigidTerrain(self.sys)
            patch = self.terrain.AddPatch(chrono.ChCoordsysD(chrono.ChVectorD(0, 0, self.height - 5), chrono.QUNIT),
                                     chrono.ChVectorD(self.width, self.length, 10))

            patch.SetContactFrictionCoefficient(0.9)
            patch.SetContactRestitutionCoefficient(0.01)
            patch.SetContactMaterialProperties(2e7, 0.3)
            patch.SetTexture(chrono.GetChronoDataFile("concrete.jpg"), self.length, self.width)
            patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
            self.terrain.Initialize()

            try:
                ground_body = patch.GetGroundBody()
                ground_asset = ground_body.GetAssets()[0]
                visual_asset = chrono.CastToChVisualization(ground_asset)
                vis_mat = chrono.ChVisualMaterial()
                vis_mat.SetKdTexture(chrono.GetChronoDataFile("concrete.jpg"))
                vis_mat.SetFresnelMax(0);
                visual_asset.material_list.append(vis_mat)
            except:
                print("Not Visual Material")

        elif terrain_type == 'hallway':
            y_max = 5.65
            x_max = 23
            offset = chrono.ChVectorD(-x_max/2, -y_max/2, .21)
            offsetF = chrono.ChVectorF(offset.x, offset.y, offset.z)

            self.terrain = veh.RigidTerrain(self.sys)
            coord_sys = chrono.ChCoordsysD(offset, chrono.ChQuaternionD(1,0,0,0))
            patch = self.terrain.AddPatch(coord_sys, chrono.GetChronoDataFile("sensor/textures/hallway.obj"), "mesh", 0.01, False)


            vis_mesh = chrono.ChTriangleMeshConnected()
            vis_mesh.LoadWavefrontMesh(chrono.GetChronoDataFile("sensor/textures/hallway.obj"), True, True)

            trimesh_shape = chrono.ChTriangleMeshShape()
            trimesh_shape.SetMesh(vis_mesh)
            trimesh_shape.SetName("mesh_name")
            trimesh_shape.SetStatic(True)

            patch.GetGroundBody().AddAsset(trimesh_shape)

            patch.SetContactFrictionCoefficient(0.9)
            patch.SetContactRestitutionCoefficient(0.01)
            patch.SetContactMaterialProperties(2e7, 0.3)

            self.terrain.Initialize()
Exemple #23
0
   def reset(self):
    
      self.isdone = False
      self.ant_sys.Clear()
      self.body_abdomen = chrono.ChBody()
      self.body_abdomen.SetPos(chrono.ChVectorD(0, self.abdomen_y0, 0 ))
      self.body_abdomen.SetMass(self.abdomen_mass)
      self.body_abdomen.SetInertiaXX(self.abdomen_inertia)
    # set collision surface properties
      self.body_abdomen.SetMaterialSurface(self.ant_material)
      abdomen_ellipsoid = chrono.ChEllipsoid(chrono.ChVectorD(0, 0, 0 ), chrono.ChVectorD(self.abdomen_x, self.abdomen_y, self.abdomen_z ))
      self.abdomen_shape = chrono.ChEllipsoidShape(abdomen_ellipsoid)
      self.body_abdomen.AddAsset(self.abdomen_shape)
      self.body_abdomen.SetMaterialSurface(self.ant_material)
      self.body_abdomen.SetCollide(True)
      self.body_abdomen.GetCollisionModel().ClearModel()
      self.body_abdomen.GetCollisionModel().AddEllipsoid(self.abdomen_x, self.abdomen_y, self.abdomen_z, chrono.ChVectorD(0, 0, 0 ) )
      self.body_abdomen.GetCollisionModel().BuildModel()
      self.ant_sys.Add(self.body_abdomen)
      
      
      leg_ang =  (1/4)*math.pi+(1/2)*math.pi*np.array([0,1,2,3])
      Leg_quat = [chrono.ChQuaternionD() for i in range(len(leg_ang))]
      self.leg_body = [chrono.ChBody() for i in range(len(leg_ang))]
      self.leg_pos= [chrono.ChVectorD() for i in range(len(leg_ang))]
      leg_cyl = chrono.ChCylinder(-chrono.ChVectorD( self.leg_length/2,  0  ,0),chrono.ChVectorD( self.leg_length/2,  0  ,0), self.leg_radius) 
      self.leg_shape = chrono.ChCylinderShape(leg_cyl)
      ankle_cyl = chrono.ChCylinder(-chrono.ChVectorD( self.ankle_length/2,  0  ,0),chrono.ChVectorD( self.ankle_length/2,  0  ,0), self.ankle_radius) 
      self.ankle_shape = chrono.ChCylinderShape(ankle_cyl)
      foot_sphere = chrono.ChSphere(chrono.ChVectorD(self.ankle_length/2, 0, 0 ), self.ankle_radius )
      self.foot_shape = chrono.ChSphereShape(foot_sphere)
      Leg_qa = [ chrono.ChQuaternionD()  for i in range(len(leg_ang))]
      Leg_q = [ chrono.ChQuaternionD()  for i in range(len(leg_ang))]
      z2x_leg = [ chrono.ChQuaternionD() for i in range(len(leg_ang))]
      Leg_rev_pos=[]
      Leg_chordsys = []
      self.legjoint_frame = []
      x_rel = []
      z_rel = []
      self.Leg_rev = [chrono.ChLinkLockRevolute() for i in range(len(leg_ang))]
      self.leg_motor = [chrono.ChLinkMotorRotationTorque() for i in range(len(leg_ang)) ]
      #ankle lists
      anklejoint_chordsys = []
      self.anklejoint_frame = []
      self.ankleCOG_frame = []
      q_ankle_zrot = [ chrono.ChQuaternionD() for i in range(len(leg_ang))]
      self.ankle_body = [chrono.ChBody() for i in range(len(leg_ang))]
      self.Ankle_rev = [chrono.ChLinkLockRevolute() for i in range(len(leg_ang))]
      self.ankle_motor = [chrono.ChLinkMotorRotationTorque() for i in range(len(leg_ang)) ]
      for i in range(len(leg_ang)):
             
             # Legs
             Leg_quat[i].Q_from_AngAxis(-leg_ang[i] , chrono.ChVectorD(0, 1, 0))
             self.leg_pos[i] = chrono.ChVectorD( (0.5*self.leg_length+self.abdomen_x)*math.cos(leg_ang[i]) ,self.abdomen_y0, (0.5*self.leg_length+self.abdomen_z)*math.sin(leg_ang[i]))
             self.leg_body[i].SetPos(self.leg_pos[i])
             self.leg_body[i].SetRot(Leg_quat[i])
             self.leg_body[i].AddAsset(self.leg_shape)
             self.leg_body[i].SetMass(self.leg_mass)
             self.leg_body[i].SetInertiaXX(self.leg_inertia)
             self.ant_sys.Add(self.leg_body[i])
             x_rel.append( Leg_quat[i].Rotate(chrono.ChVectorD(1, 0, 0)))
             z_rel.append( Leg_quat[i].Rotate(chrono.ChVectorD(0, 0, 1)))
             Leg_qa[i].Q_from_AngAxis(-leg_ang[i] , chrono.ChVectorD(0, 1, 0))
             z2x_leg[i].Q_from_AngAxis(chrono.CH_C_PI / 2 , x_rel[i])
             Leg_q[i] = z2x_leg[i] * Leg_qa[i] 
             Leg_rev_pos.append(chrono.ChVectorD(self.leg_pos[i]-chrono.ChVectorD(math.cos(leg_ang[i])*self.leg_length/2,0,math.sin(leg_ang[i])*self.leg_length/2)))
             Leg_chordsys.append(chrono.ChCoordsysD(Leg_rev_pos[i], Leg_q[i]))
             self.legjoint_frame.append(chrono.ChFrameD(Leg_chordsys[i]))
             self.Leg_rev[i].Initialize(self.body_abdomen, self.leg_body[i],Leg_chordsys[i])
             self.ant_sys.Add(self.Leg_rev[i])
             self.leg_motor[i].Initialize(self.body_abdomen, self.leg_body[i],self.legjoint_frame[i])
             self.ant_sys.Add(self.leg_motor[i])
             # Ankles
             q_ankle_zrot[i].Q_from_AngAxis(-self.ankle_angle , z_rel[i])
             anklejoint_chordsys.append(chrono.ChCoordsysD(self.leg_body[i].GetPos()+ self.leg_body[i].GetRot().Rotate(chrono.ChVectorD(self.leg_length/2, 0, 0)) , q_ankle_zrot[i] * self.leg_body[i].GetRot() ))
             self.anklejoint_frame.append(chrono.ChFrameD(anklejoint_chordsys[i]))
             self.ankle_body[i].SetPos(self.anklejoint_frame[i].GetPos() + self.anklejoint_frame[i].GetRot().Rotate(chrono.ChVectorD(self.ankle_length/2, 0, 0)))
             self.ankle_body[i].SetRot(  self.anklejoint_frame[i].GetRot() )
             self.ankle_body[i].AddAsset(self.ankle_shape)
             self.ankle_body[i].SetMass(self.ankle_mass)
             self.ankle_body[i].SetInertiaXX(self.ankle_inertia)
             self.ant_sys.Add(self.ankle_body[i])
             self.Ankle_rev[i].Initialize(self.leg_body[i], self.ankle_body[i], anklejoint_chordsys[i])
             self.ant_sys.Add(self.Ankle_rev[i])
             self.ankle_motor[i].Initialize(self.leg_body[i], self.ankle_body[i],self.anklejoint_frame[i])
             self.ant_sys.Add(self.ankle_motor[i])
             # Feet collisions
             self.ankle_body[i].SetMaterialSurface(self.ant_material)
             self.ankle_body[i].SetCollide(True)
             self.ankle_body[i].GetCollisionModel().ClearModel()
             self.ankle_body[i].GetCollisionModel().AddSphere(self.ankle_radius, chrono.ChVectorD(self.ankle_length/2, 0, 0 ) )
             self.ankle_body[i].GetCollisionModel().BuildModel()
             self.ankle_body[i].AddAsset(self.ankle_shape)
             
             self.ankle_body[i].AddAsset(self.foot_shape)
             
             self.Leg_rev[i].GetLimit_Rz().SetActive(True)
             self.Leg_rev[i].GetLimit_Rz().SetMin(-math.pi/3)
             self.Leg_rev[i].GetLimit_Rz().SetMax(math.pi/3)
             self.Ankle_rev[i].GetLimit_Rz().SetActive(True)
             self.Ankle_rev[i].GetLimit_Rz().SetMin(-math.pi/2)
             self.Ankle_rev[i].GetLimit_Rz().SetMax(math.pi/4)
             

           
    # Create the room floor: a simple fixed rigid body with a collision shape
    # and a visualization shape
      self.body_floor = chrono.ChBody()
      self.body_floor.SetBodyFixed(True)
      self.body_floor.SetPos(chrono.ChVectorD(0, -1, 0 ))
      self.body_floor.SetMaterialSurface(self.ant_material)
      
      # Floor Collision.
      self.body_floor.SetMaterialSurface(self.ant_material)
      self.body_floor.GetCollisionModel().ClearModel()
      self.body_floor.GetCollisionModel().AddBox(50, 1, 50, chrono.ChVectorD(0, 0, 0 ))
      self.body_floor.GetCollisionModel().BuildModel()
      self.body_floor.SetCollide(True)

    # Visualization shape
      body_floor_shape = chrono.ChBoxShape()
      body_floor_shape.GetBoxGeometry().Size = chrono.ChVectorD(5, 1, 5)
      body_floor_shape.SetColor(chrono.ChColor(0.4,0.4,0.5))
      self.body_floor.GetAssets().push_back(body_floor_shape)
      body_floor_texture = chrono.ChTexture()
      body_floor_texture.SetTextureFilename(chrono.GetChronoDataFile('vehicle/terrain/textures/grass.jpg'))
      self.body_floor.GetAssets().push_back(body_floor_texture)     
      self.ant_sys.Add(self.body_floor)
      #self.body_abdomen.SetBodyFixed(True)
   
      if (self.animate):
            self.myapplication.AssetBindAll()
            self.myapplication.AssetUpdateAll()

      self.numsteps= 0
      self.step(np.zeros(8))
      return self.get_ob()
Exemple #24
0
def main():
    print("Copyright (c) 2017 projectchrono.org" + "\n\n")

    # Create systems

    #  Create the HMMWV vehicle, set parameters, and initialize
    my_hmmwv = veh.HMMWV_Full()
    my_hmmwv.SetContactMethod(contact_method)
    my_hmmwv.SetChassisCollisionType(chassis_collision_type)
    my_hmmwv.SetChassisFixed(False)
    my_hmmwv.SetInitPosition(chrono.ChCoordsysD(initLoc, initRot))
    my_hmmwv.SetPowertrainType(powertrain_model)
    my_hmmwv.SetDriveType(drive_type)
    my_hmmwv.SetSteeringType(steering_type)
    my_hmmwv.SetTireType(tire_model)
    my_hmmwv.SetTireStepSize(tire_step_size)
    my_hmmwv.Initialize()

    my_hmmwv.SetChassisVisualizationType(chassis_vis_type)
    my_hmmwv.SetSuspensionVisualizationType(suspension_vis_type)
    my_hmmwv.SetSteeringVisualizationType(steering_vis_type)
    my_hmmwv.SetWheelVisualizationType(wheel_vis_type)
    my_hmmwv.SetTireVisualizationType(tire_vis_type)

    # Create the terrain

    terrain = veh.RigidTerrain(my_hmmwv.GetSystem())
    if (contact_method == chrono.ChContactMethod_NSC):
        patch_mat = chrono.ChMaterialSurfaceNSC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
    elif (contact_method == chrono.ChContactMethod_SMC):
        patch_mat = chrono.ChMaterialSurfaceSMC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
        patch_mat.SetYoungModulus(2e7)
    patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                             chrono.ChVectorD(0, 0, 1), terrainLength,
                             terrainWidth)
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
    terrain.Initialize()

    # Create the vehicle Irrlicht interface
    app = veh.ChWheeledVehicleIrrApp(my_hmmwv.GetVehicle(), 'HMMWV',
                                     irr.dimension2du(1000, 800))

    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(30, -30, 100),
                         irr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Initialize output

    try:
        os.mkdir(out_dir)
    except:
        print("Error creating directory ")

    # Set up vehicle output
    my_hmmwv.GetVehicle().SetChassisOutput(True)
    my_hmmwv.GetVehicle().SetSuspensionOutput(0, True)
    my_hmmwv.GetVehicle().SetSteeringOutput(0, True)
    my_hmmwv.GetVehicle().SetOutput(veh.ChVehicleOutput.ASCII, out_dir,
                                    "output", 0.1)

    # Generate JSON information with available output channels
    my_hmmwv.GetVehicle().ExportComponentList(out_dir + "/component_list.json")

    # Create the interactive driver system
    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    steering_time = 1.0  # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0  # time to go from 0 to +1
    braking_time = 0.3  # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    driver.Initialize()

    # Simulation loop

    # Number of simulation steps between miscellaneous events
    render_steps = m.ceil(render_step_size / step_size)
    debug_steps = m.ceil(debug_step_size / step_size)

    # Initialize simulation frame counter and simulation time
    step_number = 0
    render_frame = 0

    if (contact_vis):
        app.SetSymbolscale(1e-4)
        # app.SetContactsDrawMode(irr.eCh_ContactsDrawMode::CONTACT_FORCES);

    # ---------------------------------------------
    # Create a sensor manager and add a point light
    # ---------------------------------------------
    manager = sens.ChSensorManager(my_hmmwv.GetSystem())
    manager.scene.AddPointLight(chrono.ChVectorF(0, 0, 100),
                                chrono.ChVectorF(2, 2, 2), 5000)
    manager.SetKeyframeSizeFromTimeStep(.001, 1 / 5)

    # ------------------------------------------------
    # Create a camera and add it to the sensor manager
    # ------------------------------------------------
    fov = 1.408
    lag = 0
    update_rate = 5
    exposure_time = 1 / update_rate
    offset_pose = chrono.ChFrameD(chrono.ChVectorD(-5, 0, 2))
    cam = sens.ChCameraSensor(
        my_hmmwv.GetChassisBody(),  # body camera is attached to
        update_rate,  # update rate in Hz
        offset_pose,  # offset pose
        image_width,  # image width
        image_height,  # image height
        fov  # camera's horizontal field of view
    )
    cam.SetName("Camera Sensor")
    # cam.SetLag(0);
    # cam.SetCollectionWindow(0);

    # Visualizes the image
    if vis:
        cam.PushFilter(
            sens.ChFilterVisualize(image_width, image_height, "HMMWV Camera"))

    # Save the current image to a png file at the specified path
    if save:
        cam.PushFilter(sens.ChFilterSave(out_dir + "cam/"))

    # Add a camera to a sensor manager
    manager.AddSensor(cam)

    # ----------------------------------------------
    # Create an IMU sensor and add it to the manager
    # ----------------------------------------------
    offset_pose = chrono.ChFrameD(
        chrono.ChVectorD(-8, 0, 1),
        chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0)))
    imu = sens.ChIMUSensor(
        my_hmmwv.GetChassisBody(),  # body imu is attached to
        imu_update_rate,  # update rate in Hz
        offset_pose,  # offset pose
        imu_noise_none  # noise model
    )
    imu.SetName("IMU Sensor")
    imu.SetLag(imu_lag)
    imu.SetCollectionWindow(imu_collection_time)

    # Provides the host access to the imu data
    imu.PushFilter(sens.ChFilterIMUAccess())

    # Add the imu to the sensor manager
    manager.AddSensor(imu)

    # ----------------------------------------------
    # Create an GPS sensor and add it to the manager
    # ----------------------------------------------
    offset_pose = chrono.ChFrameD(
        chrono.ChVectorD(-8, 0, 1),
        chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0)))
    gps = sens.ChGPSSensor(
        my_hmmwv.GetChassisBody(),  # body imu is attached to
        gps_update_rate,  # update rate in Hz
        offset_pose,  # offset pose
        gps_reference,
        gps_noise_none  # noise model
    )
    gps.SetName("GPS Sensor")
    gps.SetLag(gps_lag)
    gps.SetCollectionWindow(gps_collection_time)

    # Provides the host access to the gps data
    gps.PushFilter(sens.ChFilterGPSAccess())

    # Add the gps to the sensor manager
    manager.AddSensor(gps)

    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = my_hmmwv.GetSystem().GetChTime()

        #End simulation
        if (time >= t_end):
            break

        if (step_number % render_steps == 0):
            app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
            app.DrawAll()
            app.EndScene()

        #Debug logging
        if (debug_output and step_number % debug_steps == 0):
            print("\n\n============ System Information ============\n")
            print("Time = " << time << "\n\n")
            #my_hmmwv.DebugLog(OUT_SPRINGS | OUT_SHOCKS | OUT_CONSTRAINTS)

            marker_driver = my_hmmwv.GetChassis().GetMarkers()[0].GetAbsCoord(
            ).pos
            marker_com = my_hmmwv.GetChassis().GetMarkers()[1].GetAbsCoord(
            ).pos
            print("Markers\n")
            print("  Driver loc:      ", marker_driver.x, " ", marker_driver.y,
                  " ", marker_driver.z)
            print("  Chassis COM loc: ", marker_com.x, " ", marker_com.y, " ",
                  marker_com.z)

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        my_hmmwv.Synchronize(time, driver_inputs, terrain)
        app.Synchronize(driver.GetInputModeAsString(), driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        terrain.Advance(step_size)
        my_hmmwv.Advance(step_size)
        app.Advance(step_size)

        # Update sensor manager
        # Will render/save/filter automatically
        manager.Update()

        # Increment frame number
        step_number += 1

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)

    return 0
Exemple #25
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    # --------------------------
    # Create the various modules
    # --------------------------

    # Create the vehicle system
    vehicle = veh.WheeledVehicle(vehicle_file, chrono.ChContactMethod_NSC)
    vehicle.Initialize(chrono.ChCoordsysD(initLoc, initRot))
    #vehicle.GetChassis().SetFixed(True)
    vehicle.SetChassisVisualizationType(veh.VisualizationType_MESH)
    vehicle.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetWheelVisualizationType(veh.VisualizationType_MESH)

    # Create and initialize the vehicle tires
    for axle in vehicle.GetAxles():
        tireL = veh.TMeasyTire(vehicle_tire_file)
        vehicle.InitializeTire(tireL, axle.m_wheels[0],
                               veh.VisualizationType_MESH)
        tireR = veh.TMeasyTire(vehicle_tire_file)
        vehicle.InitializeTire(tireR, axle.m_wheels[1],
                               veh.VisualizationType_MESH)

    # Create and initialize the powertrain system
    powertrain = veh.SimpleMapPowertrain(vehicle_powertrain_file)
    vehicle.InitializePowertrain(powertrain)

    # Create and initialize the trailer
    trailer = veh.WheeledTrailer(vehicle.GetSystem(), trailer_file)
    trailer.Initialize(vehicle.GetChassis())
    trailer.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    trailer.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    trailer.SetWheelVisualizationType(veh.VisualizationType_NONE)

    # Create abd initialize the trailer tires
    for axle in trailer.GetAxles():
        tireL = veh.TMeasyTire(trailer_tire_file)
        trailer.InitializeTire(tireL, axle.m_wheels[0],
                               veh.VisualizationType_PRIMITIVES)
        tireR = veh.TMeasyTire(trailer_tire_file)
        trailer.InitializeTire(tireR, axle.m_wheels[1],
                               veh.VisualizationType_PRIMITIVES)

    # Create the ground
    terrain = veh.RigidTerrain(vehicle.GetSystem(), rigidterrain_file)

    app = veh.ChVehicleIrrApp(vehicle, 'Sedan+Trailer (JSON specification)',
                              irr.dimension2du(1000, 800))
    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(30, -30, 100),
                         irr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    # NOTE: this is not exact, since we do not render quite at the specified FPS.
    steering_time = 1.0
    # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0
    # time to go from 0 to +1
    braking_time = 0.3
    # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    driver.Initialize()

    # ---------------
    # Simulation loop
    # ---------------

    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):

        # Render scene
        app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Collect output data from modules (for inter-module communication)
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        time = vehicle.GetSystem().GetChTime()
        driver.Synchronize(time)
        vehicle.Synchronize(time, driver_inputs, terrain)
        trailer.Synchronize(time, driver_inputs.m_braking, terrain)
        terrain.Synchronize(time)
        app.Synchronize(driver.GetInputModeAsString(), driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        vehicle.Advance(step_size)
        trailer.Advance(step_size)
        terrain.Advance(step_size)
        app.Advance(step_size)

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)
Exemple #26
0
mat = chrono.ChMaterialSurfaceNSC()

# Create all rigid bodies.

radA = 2
radB = 4

# ...the truss
mbody_truss = chrono.ChBodyEasyBox(20, 10, 2, 1000, True, False, mat)
mphysicalSystem.Add(mbody_truss)
mbody_truss.SetBodyFixed(True)
mbody_truss.SetPos(chrono.ChVectorD(0, 0, 3))

# ...a texture asset that will be shared among the four wheels
cylinder_texture = chrono.ChTexture(
    chrono.GetChronoDataFile("textures/pinkwhite.png"))

# ...the rotating bar support for the two epicycloidal wheels
mbody_train = chrono.ChBodyEasyBox(8, 1.5, 1.0, 1000, True, False, mat)
mphysicalSystem.Add(mbody_train)
mbody_train.SetPos(chrono.ChVectorD(3, 0, 0))

# ...which must rotate respect to truss along Z axis, in 0,0,0
link_revoluteTT = chrono.ChLinkLockRevolute()
link_revoluteTT.Initialize(
    mbody_truss, mbody_train,
    chrono.ChCoordsysD(chrono.ChVectorD(0, 0, 0), chrono.QUNIT))
mphysicalSystem.AddLink(link_revoluteTT)

# ...the first gear
mbody_gearA = chrono.ChBodyEasyCylinder(radA, 0.5, 1000, True, False, mat)
mvisualizebeamC.SetZbufferHide(False)
my_mesh.AddAsset(mvisualizebeamC)

# ---------------------------------------------------------------------
#
#  Create an Irrlicht application to visualize the system
#

# Create the Irrlicht visualization (open the Irrlicht device,
# bind a simple user interface, etc. etc.)
myapplication = chronoirr.ChIrrApp(
    my_system, 'Test FEA: the Jeffcott rotor with IGA beams',
    chronoirr.dimension2du(1024, 768))

myapplication.AddTypicalLogo(
    chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
myapplication.AddTypicalSky()
myapplication.AddTypicalCamera(chronoirr.vector3df(0, 1, 4),
                               chronoirr.vector3df(beam_L / 2, 0, 0))
myapplication.AddTypicalLights()

# This is needed if you want to see things in Irrlicht 3D view.
myapplication.AssetBindAll()
myapplication.AssetUpdateAll()

# ---------------------------------------------------------------------
#
#  Run the simulation
#

# Set to a more precise HHT timestepper if needed
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    #  Create the HMMWV vehicle, set parameters, and initialize
    my_hmmwv = veh.HMMWV_Full()
    my_hmmwv.SetContactMethod(chrono.ChContactMethod_SMC)
    my_hmmwv.SetInitPosition(
        chrono.ChCoordsysD(chrono.ChVectorD(-5, -2, 0.6),
                           chrono.ChQuaternionD(1, 0, 0, 0)))
    my_hmmwv.SetPowertrainType(veh.PowertrainModelType_SHAFTS)
    my_hmmwv.SetDriveType(veh.DrivelineType_AWD)
    my_hmmwv.SetTireType(veh.TireModelType_RIGID)
    my_hmmwv.Initialize()

    my_hmmwv.SetChassisVisualizationType(veh.VisualizationType_NONE)
    my_hmmwv.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    my_hmmwv.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    my_hmmwv.SetWheelVisualizationType(veh.VisualizationType_NONE)
    my_hmmwv.SetTireVisualizationType(veh.VisualizationType_MESH)

    # Create the (custom) driver
    driver = MyDriver(my_hmmwv.GetVehicle(), 0.5)
    driver.Initialize()

    # Create the SCM deformable terrain patch
    terrain = veh.SCMDeformableTerrain(my_hmmwv.GetSystem())
    terrain.SetSoilParameters(
        2e6,  # Bekker Kphi
        0,  # Bekker Kc
        1.1,  # Bekker n exponent
        0,  # Mohr cohesive limit (Pa)
        30,  # Mohr friction limit (degrees)
        0.01,  # Janosi shear coefficient (m)
        2e8,  # Elastic stiffness (Pa/m), before plastic yield
        3e4  # Damping (Pa s/m), proportional to negative vertical speed (optional)
    )

    # Optionally, enable moving patch feature (single patch around vehicle chassis)
    terrain.AddMovingPatch(my_hmmwv.GetChassisBody(),
                           chrono.ChVectorD(0, 0,
                                            0), chrono.ChVectorD(5, 3, 1))

    # Set plot type for SCM (false color plotting)
    terrain.SetPlotType(veh.SCMDeformableTerrain.PLOT_SINKAGE, 0, 0.1)

    # Initialize the SCM terrain, specifying the initial mesh grid
    terrain.Initialize(terrainLength, terrainWidth, delta)

    # Create the vehicle Irrlicht interface
    app = veh.ChWheeledVehicleIrrApp(my_hmmwv.GetVehicle(),
                                     'HMMWV Deformable Soil Demo',
                                     irr.dimension2du(1000, 800))
    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(30, -30, 100),
                         irr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(chrono.ChVectorD(0.0, 0.0, 1.75), 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Simulation loop
    while (app.GetDevice().run()):
        time = my_hmmwv.GetSystem().GetChTime()

        # End simulation
        if (time >= 4):
            break

        # Draw scene
        app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        my_hmmwv.Synchronize(time, driver_inputs, terrain)
        app.Synchronize("", driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        terrain.Advance(step_size)
        my_hmmwv.Advance(step_size)
        app.Advance(step_size)

    return 0
Exemple #29
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    # Create systems

    #  Create the HMMWV vehicle, set parameters, and initialize
    my_hmmwv = veh.HMMWV_Full()
    my_hmmwv.SetContactMethod(contact_method)
    my_hmmwv.SetChassisCollisionType(chassis_collision_type)
    my_hmmwv.SetChassisFixed(False) 
    my_hmmwv.SetInitPosition(chrono.ChCoordsysD(initLoc, initRot))
    my_hmmwv.SetPowertrainType(powertrain_model)
    my_hmmwv.SetDriveType(drive_type)
    my_hmmwv.SetSteeringType(steering_type)
    my_hmmwv.SetTireType(tire_model)
    my_hmmwv.SetTireStepSize(tire_step_size)
    my_hmmwv.Initialize()

    my_hmmwv.SetChassisVisualizationType(chassis_vis_type)
    my_hmmwv.SetSuspensionVisualizationType(suspension_vis_type)
    my_hmmwv.SetSteeringVisualizationType(steering_vis_type)
    my_hmmwv.SetWheelVisualizationType(wheel_vis_type)
    my_hmmwv.SetTireVisualizationType(tire_vis_type)

    # Create the terrain

    terrain = veh.RigidTerrain(my_hmmwv.GetSystem())
    patch = terrain.AddPatch(chrono.ChCoordsysD(chrono.ChVectorD(0, 0, terrainHeight - 5), chrono.QUNIT), chrono.ChVectorD(terrainLength, terrainWidth, 10))

    patch.SetContactFrictionCoefficient(0.9)
    patch.SetContactRestitutionCoefficient(0.01)
    patch.SetContactMaterialProperties(2e7, 0.3)
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
    terrain.Initialize()

    # Create the vehicle Irrlicht interface
    # please note that wchar_t conversion requres some workaround
    app = veh.ChWheeledVehicleIrrApp(my_hmmwv.GetVehicle())

    app.SetSkyBox()
    app.AddTypicalLights(chronoirr.vector3df(30, -30, 100), chronoirr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Initialize output

    try:
           os.mkdir(out_dir)
    except:
           print("Error creating directory " )

    # Set up vehicle output
    my_hmmwv.GetVehicle().SetChassisOutput(True);
    my_hmmwv.GetVehicle().SetSuspensionOutput(0, True);
    my_hmmwv.GetVehicle().SetSteeringOutput(0, True);
    my_hmmwv.GetVehicle().SetOutput(veh.ChVehicleOutput.ASCII , out_dir, "output", 0.1);

    # Generate JSON information with available output channels
    my_hmmwv.GetVehicle().ExportComponentList(out_dir + "/component_list.json");

    # Create the interactive driver system
    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    steering_time = 1.0  # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0  # time to go from 0 to +1
    braking_time = 0.3   # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    driver.Initialize()


    # Simulation loop


    # Number of simulation steps between miscellaneous events
    render_steps = m.ceil(render_step_size / step_size)
    debug_steps = m.ceil(debug_step_size / step_size)

    # Initialize simulation frame counter and simulation time
    step_number = 0
    render_frame = 0

    if (contact_vis):
        app.SetSymbolscale(1e-4);
        #app.SetContactsDrawMode(chronoirr.eCh_ContactsDrawMode::CONTACT_FORCES);

    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = my_hmmwv.GetSystem().GetChTime()

        #End simulation
        if (time >= t_end):
            break

        app.BeginScene(True, True, chronoirr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        #Debug logging
        if (debug_output and step_number % debug_steps == 0) :
            print("\n\n============ System Information ============\n")
            print( "Time = " << time << "\n\n")
            #my_hmmwv.DebugLog(OUT_SPRINGS | OUT_SHOCKS | OUT_CONSTRAINTS)

            marker_driver = my_hmmwv.GetChassis().GetMarkers()[0].GetAbsCoord().pos
            marker_com = my_hmmwv.GetChassis().GetMarkers()[1].GetAbsCoord().pos
            print( "Markers\n")
            print( "  Driver loc:      " , marker_driver.x , " " , marker_driver.y , " " , marker_driver.z)
            print( "  Chassis COM loc: " , marker_com.x, " ", marker_com.y, " ",marker_com.z)

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        my_hmmwv.Synchronize(time, driver_inputs, terrain)
        app.Synchronize(driver.GetInputModeAsString(), driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        terrain.Advance(step_size)
        my_hmmwv.Advance(step_size)
        app.Advance(step_size)

        # Increment frame number
        step_number += 1

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)

    return 0
Exemple #30
0
print("...done!")

# Print exported items
for my_item in exported_items:
    print(my_item.GetName())

# Add items to the physical system
for my_item in exported_items:
    my_system.Add(my_item)

# ---------------------------------------------------------------------
#
#  Create an Irrlicht application to visualize the system
#
print(chrono.GetChronoDataFile("skybox/"))

myapplication = chronoirr.ChIrrApp(
    my_system, 'Test: using data exported by Chrono::Solidworks',
    chronoirr.dimension2du(1024, 768))

myapplication.AddTypicalSky()
myapplication.AddTypicalLogo(chrono.GetChronoDataPath() +
                             'logo_pychrono_alpha.png')
myapplication.AddTypicalCamera(chronoirr.vector3df(0.3, 0.3, 0.4))
myapplication.AddTypicalLights()

# ==IMPORTANT!== Use this function for adding a ChIrrNodeAsset to all items
# in the system. These ChIrrNodeAsset assets are 'proxies' to the Irrlicht meshes.
# If you need a finer control on which item really needs a visualization proxy in
# Irrlicht, just use application.AssetBind(myitem); on a per-item basis.