Exemple #1
0
def test_kuiper_anglerange():
    alpha1 = np.asarray([
        0.291662278945, 5.899415544666, 5.402236718096, 3.728212505263,
        5.303188109786, 3.737946900082, 3.850015526787, 4.902154536516,
        3.631621444982, 5.341562525096
    ])
    alpha2 = np.asarray([
        0.613650458799, 2.109660249330, 3.617555161298, 6.196794760548,
        1.856071575830, 2.991480015107, 1.789200626487, 4.835921843822,
        2.767491245457, 1.744565591973
    ])
    alpha1b = alpha1 - np.pi
    alpha2b = alpha2 - np.pi

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        p, k = pycircstat.kuiper(alpha1, alpha2)
        pb, kb = pycircstat.kuiper(alpha1b, alpha2b)

    assert_allclose(p,
                    pb,
                    rtol=1e-4,
                    atol=1e-4,
                    err_msg="P-values are not equal")
    assert_allclose(k,
                    kb,
                    rtol=1e-4,
                    atol=1e-4,
                    err_msg="K statistics not equal")
Exemple #2
0
def test_kuiper():
    alpha1 = np.asarray([0.291662278945,
                         5.899415544666,
                         5.402236718096,
                         3.728212505263,
                         5.303188109786,
                         3.737946900082,
                         3.850015526787,
                         4.902154536516,
                         3.631621444982,
                         5.341562525096])
    alpha2 = np.asarray([0.613650458799,
                         2.109660249330,
                         3.617555161298,
                         6.196794760548,
                         1.856071575830,
                         2.991480015107,
                         1.789200626487,
                         4.835921843822,
                         2.767491245457,
                         1.744565591973])
    p0 = 0.1
    k0 = 70
    K0 = 67.395
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        p, k = pycircstat.kuiper(alpha1, alpha2)
    assert_allclose(p, p0, rtol=1e-4, atol=1e-4, err_msg="Error in p-values.")
    assert_allclose(
        k,
        k0,
        rtol=1e-4,
        atol=1e-4,
        err_msg="Error in statistic k.")
Exemple #3
0
def test_kuiper_warning():
    alpha1 = np.asarray([0.291662278945,
                         5.899415544666,
                         5.402236718096,
                         3.728212505263,
                         5.303188109786,
                         3.737946900082,
                         3.850015526787,
                         4.902154536516,
                         3.631621444982,
                         5.341562525096])
    alpha2 = np.asarray([0.613650458799,
                         2.109660249330,
                         3.617555161298,
                         6.196794760548,
                         1.856071575830,
                         2.991480015107,
                         1.789200626487,
                         4.835921843822,
                         2.767491245457,
                         1.744565591973])
    p0 = 0.1
    k0 = 70
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        p, k = pycircstat.kuiper(alpha1, alpha2)
        assert len(w) == 1
        assert issubclass(w[-1].category, UserWarning)
        assert "N=10 not found in table" in str(w[-1].message)
Exemple #4
0
def test_kuiper_anglerange():
    alpha1 = np.asarray([0.291662278945,
                         5.899415544666,
                         5.402236718096,
                         3.728212505263,
                         5.303188109786,
                         3.737946900082,
                         3.850015526787,
                         4.902154536516,
                         3.631621444982,
                         5.341562525096])
    alpha2 = np.asarray([0.613650458799,
                         2.109660249330,
                         3.617555161298,
                         6.196794760548,
                         1.856071575830,
                         2.991480015107,
                         1.789200626487,
                         4.835921843822,
                         2.767491245457,
                         1.744565591973])
    alpha1b = alpha1 - np.pi
    alpha2b = alpha2 - np.pi

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        p, k = pycircstat.kuiper(alpha1, alpha2)
        pb, kb = pycircstat.kuiper(alpha1b, alpha2b)

    assert_allclose(p,
                    pb,
                    rtol=1e-4,
                    atol=1e-4,
                    err_msg="P-values are not equal"
                    )
    assert_allclose(k,
                    kb,
                    rtol=1e-4,
                    atol=1e-4,
                    err_msg="K statistics not equal"
                    )
Exemple #5
0
def test_kuiper_warning():
    unknown_N = 26
    alpha1 = np.random.rand(unknown_N)*2.*np.pi
    alpha2 = np.random.rand(unknown_N)*2.*np.pi

    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        p, k = pycircstat.kuiper(alpha1, alpha2)

        assert len(w) == 1
        assert issubclass(w[-1].category, UserWarning)
        assert "N=%d not found in table" % unknown_N in str(w[-1].message)
Exemple #6
0
def _compute_novel_rep_spike_stats(novel_phases, rep_phases):

    # compute rayleigh test for each condition
    p_novel, z_novel = pycircstat.rayleigh(novel_phases, axis=0)
    p_rep, z_rep = pycircstat.rayleigh(rep_phases, axis=0)

    # test whether the means are different
    ww_pvals, ww_tables = pycircstat.watson_williams(novel_phases, rep_phases, axis=0)
    ww_fstat = np.array([x.loc['Columns'].F for x in ww_tables])

    # test whether the medians are different
    med_pvals, med_stat = pycircstat.cmtest(novel_phases, rep_phases, axis=0)

    # finall run kuiper test for difference in mean and/or dispersion
    p_kuiper, stat_kuiper = pycircstat.kuiper(novel_phases, rep_phases, axis=0)

    return p_novel, z_novel, p_rep, z_rep, ww_pvals, ww_fstat, med_pvals, med_stat, p_kuiper, stat_kuiper
def compute_phase_stats_with_shuffle(events, spike_rel_times, phase_data_hilbert, phase_bin_start,
                                     phase_bin_stop, do_permute=False, shuffle_type=1):

    spike_rel_times_tmp = spike_rel_times.copy()
    e_tmp = events.copy()

    if do_permute:

        if shuffle_type == 1:

            # permute the novel
            novel_events = np.where(events.isFirst.values)[0]
            perm_novel_events = np.random.permutation(novel_events)
            spike_rel_times_tmp[novel_events] = spike_rel_times_tmp[perm_novel_events]

            # and repeated separately
            rep_events = np.where(~events.isFirst.values)[0]
            perm_rep_events = np.random.permutation(rep_events)
            spike_rel_times_tmp[rep_events] = spike_rel_times_tmp[perm_rep_events]

        else:

            e_tmp['isFirst'] = np.random.permutation(e_tmp.isFirst)

    # get the phases at which the spikes occurred and bin into novel and repeated items for each hilbert band
    spike_phases_hilbert = _compute_spike_phase_by_freq(spike_rel_times_tmp,
                                                        phase_bin_start,
                                                        phase_bin_stop,
                                                        phase_data_hilbert,
                                                        events)

    # bin into repeated and novel phases
    novel_phases, rep_phases = _bin_phases_into_cond(spike_phases_hilbert, e_tmp)

    if (len(novel_phases) > 0) & (len(rep_phases) > 0):

        # test phase locking for all spikes comboined
        all_spikes_phases = np.vstack([novel_phases, rep_phases])
        rayleigh_pval_all, rayleigh_z_all = pycircstat.rayleigh(all_spikes_phases, axis=0)
        rvl_all = pycircstat.resultant_vector_length(all_spikes_phases, axis=0)

        # rayleigh test for uniformity
        rvl_novel = pycircstat.resultant_vector_length(novel_phases, axis=0)
        rvl_rep = pycircstat.resultant_vector_length(rep_phases, axis=0)
        rvl_diff = rvl_novel - rvl_rep

        # compute rayleigh test for each condition
        rayleigh_pval_novel, rayleigh_z_novel = pycircstat.rayleigh(novel_phases, axis=0)
        rayleigh_pval_rep, rayleigh_z_rep = pycircstat.rayleigh(rep_phases, axis=0)
        rayleigh_diff = rayleigh_z_novel - rayleigh_z_rep

        # watson williams test for equal means
        ww_pval, ww_tables = pycircstat.watson_williams(novel_phases, rep_phases, axis=0)
        ww_fstat = np.array([x.loc['Columns'].F for x in ww_tables])

        # kuiper test, to test for difference in dispersion (not mean, because I'm making them equal)
        kuiper_pval, stat_kuiper = pycircstat.kuiper(novel_phases - pycircstat.mean(novel_phases),
                                                     rep_phases - pycircstat.mean(rep_phases), axis=0)

        return (rvl_novel, rvl_rep, rvl_diff, ww_fstat, stat_kuiper, rayleigh_z_novel, rayleigh_z_rep, rayleigh_diff,
                rayleigh_z_all, rvl_all), \
               (rayleigh_pval_novel, rayleigh_pval_rep, ww_pval, kuiper_pval, rayleigh_pval_all), novel_phases, rep_phases

    else:
        return (np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2])), \
               (np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2])), novel_phases, rep_phases
def compute_phase_stats_with_shuffle(events, spike_rel_times, phase_data_hilbert, phase_bin_start,
                                     phase_bin_stop, do_permute=False):

    spike_rel_times_tmp = spike_rel_times.copy()
    if do_permute:

        # permute the novel
        novel_events = np.where(events.isFirst.values)[0]
        perm_novel_events = np.random.permutation(novel_events)
        spike_rel_times_tmp[novel_events] = spike_rel_times_tmp[perm_novel_events]

        # and repeated separately
        rep_events = np.where(~events.isFirst.values)[0]
        perm_rep_events = np.random.permutation(rep_events)
        spike_rel_times_tmp[rep_events] = spike_rel_times_tmp[perm_rep_events]

    # get the phases at which the spikes occurred and bin into novel and repeated items for each hilbert band
    spike_phases_hilbert = _compute_spike_phase_by_freq(spike_rel_times_tmp,
                                                        phase_bin_start,
                                                        phase_bin_stop,
                                                        phase_data_hilbert,
                                                        events)

    # bin into repeated and novel phases
    novel_phases, rep_phases = _bin_phases_into_cond(spike_phases_hilbert, events)

    if (len(novel_phases) > 0) & (len(rep_phases) > 0):

        # rayleigh test for uniformity
        rvl_novel = pycircstat.resultant_vector_length(novel_phases, axis=0)
        rvl_rep = pycircstat.resultant_vector_length(rep_phases, axis=0)
        rvl_diff = rvl_novel - rvl_rep

        # compute rayleigh test for each condition
        rayleigh_pval_novel, rayleigh_z_novel = pycircstat.rayleigh(novel_phases, axis=0)
        rayleigh_pval_rep, rayleigh_z_rep = pycircstat.rayleigh(rep_phases, axis=0)
        rayleigh_diff = rayleigh_z_novel - rayleigh_z_rep

        # watson williams test for equal means
        ww_pval, ww_tables = pycircstat.watson_williams(novel_phases, rep_phases, axis=0)
        ww_fstat = np.array([x.loc['Columns'].F for x in ww_tables])

        # kuiper test, to test for difference in dispersion (not mean, because I'm making them equal)
        kuiper_pval, stat_kuiper = pycircstat.kuiper(novel_phases - pycircstat.mean(novel_phases),
                                                     rep_phases - pycircstat.mean(rep_phases), axis=0)

        return (rvl_novel, rvl_rep, rvl_diff, ww_fstat, stat_kuiper, rayleigh_z_novel, rayleigh_z_rep, rayleigh_diff), \
               (rayleigh_pval_novel, rayleigh_pval_rep, ww_pval, kuiper_pval), novel_phases, rep_phases

    else:
        return (np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2])), \
               (np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2]),
                np.array([np.nan] * phase_data_hilbert.shape[2])), novel_phases, rep_phases