def get_model_data(name, timings, errors):
    """Get model data for a single model."""
    # Load model config
    reset_cfg()
    cfg.merge_from_file(model_zoo.get_config_file(name))
    config_url, _, model_id, _, weight_url_full = model_zoo.get_model_info(
        name)
    # Get model complexity
    cx = net.complexity(builders.get_model())
    # Inference time is measured in ms with a reference batch_size and num_gpus
    batch_size, num_gpus = 64, 1
    reference = batch_size / cfg.TEST.BATCH_SIZE * cfg.NUM_GPUS / num_gpus
    infer_time = timings[name]["test_fw_time"] * reference * 1000
    # Training time is measured in hours for 100 epochs over the ImageNet train set
    iterations = 1281167 / cfg.TRAIN.BATCH_SIZE * 100
    train_time = timings[name]["train_fw_bw_time"] * iterations / 3600
    # Gather all data about the model
    return {
        "config_url": "configs/" + config_url,
        "flops": round(cx["flops"] / 1e9, 1),
        "params": round(cx["params"] / 1e6, 1),
        "acts": round(cx["acts"] / 1e6, 1),
        "batch_size": cfg.TRAIN.BATCH_SIZE,
        "infer_time": round(infer_time),
        "train_time": round(train_time, 1),
        "error": round(errors[name]["top1_err"], 1),
        "model_id": model_id,
        "weight_url": weight_url_full,
    }
Exemple #2
0
def test_timing(key):
    """Measure the timing of a single model."""
    reset_cfg()
    merge_from_file(model_zoo.get_config_file(key))
    cfg.PREC_TIME.WARMUP_ITER, cfg.PREC_TIME.NUM_ITER = 5, 50
    cfg.OUT_DIR, cfg.LOG_DEST = tempfile.mkdtemp(), "file"
    dist.multi_proc_run(num_proc=cfg.NUM_GPUS, fun=trainer.time_model)
    log_file = os.path.join(cfg.OUT_DIR, "stdout.log")
    data = logging.sort_log_data(logging.load_log_data(log_file))["iter_times"]
    shutil.rmtree(cfg.OUT_DIR)
    return data
Exemple #3
0
def test_error(key):
    """Measure the error of a single model."""
    reset_cfg()
    merge_from_file(model_zoo.get_config_file(key))
    cfg.TEST.WEIGHTS = model_zoo.get_weights_file(key)
    cfg.OUT_DIR, cfg.LOG_DEST = tempfile.mkdtemp(), "file"
    dist.multi_proc_run(num_proc=cfg.NUM_GPUS, fun=trainer.test_model)
    log_file = os.path.join(cfg.OUT_DIR, "stdout.log")
    data = logging.sort_log_data(logging.load_log_data(log_file))["test_epoch"]
    data = {"top1_err": data["top1_err"][-1], "top5_err": data["top5_err"][-1]}
    shutil.rmtree(cfg.OUT_DIR)
    return data
Exemple #4
0
def build_model(name, pretrained=False, cfg_list=()):
    """Constructs a predefined model (note: loads global config as well)."""
    # Load the config
    reset_cfg()
    config_file = get_config_file(name)
    cfg.merge_from_file(config_file)
    cfg.merge_from_list(cfg_list)
    # Construct model
    model = builders.build_model()
    # Load pretrained weights
    if pretrained:
        weights_file = get_weights_file(name)
        cp.load_checkpoint(weights_file, model)
    return model
Exemple #5
0
def sample_cfgs(seed):
    """Samples chunk configs and return those that are unique and valid."""
    # Fix RNG seed (every call to this function should use a unique seed)
    np.random.seed(seed)
    setup_cfg = sweep_cfg.SETUP
    cfgs = {}
    for _ in range(setup_cfg.CHUNK_SIZE):
        # Sample parameters [key, val, ...] list based on the samplers
        params = samplers.sample_parameters(setup_cfg.SAMPLERS)
        # Check if config is unique, if not continue
        key = zip(params[0::2], params[1::2])
        key = " ".join(["{} {}".format(k, v) for k, v in key])
        if key in cfgs:
            continue
        # Generate config from parameters
        reset_cfg()
        cfg.merge_from_other_cfg(setup_cfg.BASE_CFG)
        cfg.merge_from_list(params)
        # Check if config is valid, if not continue
        is_valid = samplers.check_regnet_constraints(setup_cfg.CONSTRAINTS)
        if not is_valid:
            continue
        # Special logic for dealing w model scaling (side effect is to standardize cfg)
        if cfg.MODEL.TYPE in ["anynet", "effnet", "regnet"]:
            scaler.scale_model()
        # Check if config is valid, if not continue
        is_valid = samplers.check_complexity_constraints(setup_cfg.CONSTRAINTS)
        if not is_valid:
            continue
        # Set config description to key
        cfg.DESC = key
        # Store copy of config if unique and valid
        cfgs[key] = cfg.clone()
        # Stop sampling if already reached quota
        if len(cfgs) == setup_cfg.NUM_CONFIGS:
            break
    return cfgs
Exemple #6
0
def test_complexity(key):
    """Measure the complexity of a single model."""
    reset_cfg()
    cfg_file = os.path.join(_PYCLS_DIR, key)
    merge_from_file(cfg_file)
    return net.complexity(builders.get_model())