def templateAnimateClusteringResultNoFailure(filename, initial_centers, ccore_flag):
        sample = read_sample(filename)

        observer = kmeans_observer()
        kmeans_instance = kmeans(sample, initial_centers, 0.025, ccore_flag, observer=observer)
        kmeans_instance.process()

        kmeans_visualizer.animate_cluster_allocation(sample, observer)
 def templateCollectEvolution(filename, initial_centers, number_clusters, ccore_flag):
     sample = read_sample(filename)
     
     observer = kmeans_observer()
     kmeans_instance = kmeans(sample, initial_centers, 0.025, ccore_flag, observer=observer)
     kmeans_instance.process()
     
     assertion.le(1, len(observer))
     for i in range(len(observer)):
         assertion.le(1, len(observer.get_centers(i)))
         for center in observer.get_centers(i):
             assertion.eq(len(sample[0]), len(center))
         
         assertion.le(1, len(observer.get_clusters(i)))
Exemple #3
0
 def templateCollectEvolution(filename, initial_centers, number_clusters, ccore_flag):
     sample = read_sample(filename);
     
     observer = kmeans_observer();
     kmeans_instance = kmeans(sample, initial_centers, 0.025, ccore_flag, observer=observer);
     kmeans_instance.process();
     
     assertion.le(1, len(observer));
     for i in range(len(observer)):
         assertion.le(1, len(observer.get_centers(i)));
         for center in observer.get_centers(i):
             assertion.eq(len(sample[0]), len(center));
         
         assertion.le(1, len(observer.get_clusters(i)));
def template_clustering(start_centers, path, tolerance=0.25, ccore=True):
    sample = read_sample(path)

    observer = kmeans_observer()
    kmeans_instance = kmeans(sample,
                             start_centers,
                             tolerance,
                             ccore,
                             observer=observer)
    (ticks, _) = timedcall(kmeans_instance.process)

    clusters = kmeans_instance.get_clusters()
    centers = kmeans_instance.get_centers()

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    kmeans_visualizer.show_clusters(sample, clusters, centers, start_centers)
    kmeans_visualizer.animate_cluster_allocation(sample, observer)
def template_clustering(start_centers, path, tolerance = 0.25, ccore = False):
    sample = read_sample(path)
    dimension = len(sample[0])

    metric = distance_metric(type_metric.MANHATTAN)

    observer = kmeans_observer()
    kmeans_instance = kmeans(sample, start_centers, tolerance, ccore, observer=observer, metric=metric)
    (ticks, _) = timedcall(kmeans_instance.process)
    
    clusters = kmeans_instance.get_clusters()
    centers = kmeans_instance.get_centers()
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    visualizer = cluster_visualizer_multidim()
    visualizer.append_clusters(clusters, sample)
    visualizer.show()

    if dimension > 3:
        kmeans_visualizer.show_clusters(sample, clusters, centers, start_centers)
        kmeans_visualizer.animate_cluster_allocation(sample, observer)
def template_clustering(start_centers, path, tolerance = 0.25, ccore = False):
    sample = read_sample(path)
    dimension = len(sample[0])

    metric = distance_metric(type_metric.MANHATTAN)

    observer = kmeans_observer()
    kmeans_instance = kmeans(sample, start_centers, tolerance, ccore, observer=observer, metric=metric)
    (ticks, _) = timedcall(kmeans_instance.process)
    
    clusters = kmeans_instance.get_clusters()
    centers = kmeans_instance.get_centers()
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    visualizer = cluster_visualizer_multidim()
    visualizer.append_clusters(clusters, sample)
    visualizer.show()

    if dimension > 3:
        kmeans_visualizer.show_clusters(sample, clusters, centers, start_centers)
        kmeans_visualizer.animate_cluster_allocation(sample, observer)