Exemple #1
0
def mapblks(segfile, outputs, params, start, stride, chunk, **kwargs):
    '''
	Open the segmentation file segfile, output files in the list outputs,
	and loop through the segmentation in strides to produce output
	parameter maps. kwargs are optional arguments to be passed to the
	segmentation routine.

	The arguments start and stride refer to chunks rather than slices.
	'''
    # Open the files
    seg = mio.Slicer(segfile)
    sndfile, atnfile, denfile = [mio.Slicer(o) for o in outputs]

    # Add the chunk size to the kwargs for convenience
    kwargs['chunk'] = chunk

    # Loop through the chunks to process output
    for n in range(start * chunk, seg.shape[-1], stride * chunk):
        print('Processing chunk', n)
        snd, atn, den = segmentation.maptissueblk(seg, params, n, **kwargs)
        # Figure out how many slices need to be written
        oend = min(seg.shape[-1], n + snd.shape[-1])
        # Write the outputs
        sndfile[n:oend] = snd
        atnfile[n:oend] = atn
        denfile[n:oend] = den
Exemple #2
0
def fuzzyblks(infile, outfile, nbr, start, stride, chunk):
    '''
	Open the input file infile, output file outfile (which should exist)
	and loop through the input in strides to fuzzify boundarys in the input
	using cutil.fuzzyimg with a neighborhood nbr.

	The arguments start and stride refer to chunks rather than slices.
	'''
    # Open the files
    inmat = mio.Slicer(infile)
    outmat = mio.Slicer(outfile)
    # Compute the one-sided pad depth
    pad = (nbr - 1) // 2

    # Loop through the chunks to process output
    for n in range(start * chunk, inmat.shape[-1], stride * chunk):
        print('Processing chunk', n)
        # Read the chunk
        start = max(0, n - pad)
        finish = min(n + chunk + pad, inmat.shape[-1])
        block = inmat[start:finish]
        # Fuzzify the block
        outblk = cutil.fuzzyimg(block, nbr)
        # Figure out the proper slices of the output block
        istart = n - start
        iend = min(chunk + istart, istart + outmat.shape[-1] - n)
        # Figure out how many slices need to be written
        oend = n + iend - istart
        # Write the block to output, automatically converting types
        outmat[n:oend] = outblk[:, :, istart:iend]
Exemple #3
0
def main(argv=None):
    if argv is None:
        argv = sys.argv[1:]
        progname = sys.argv[0]

    # Set default options
    a = b = 1.
    try:
        nproc = multiprocessing.cpu_count()
    except NotImplementedError:
        nproc = 1

    optlist, args = getopt.getopt(argv, 'p:a:b:h')

    # Parse the options list
    for opt in optlist:
        if opt[0] == '-a': a = complex(opt[1])
        elif opt[0] == '-b': b = complex(opt[1])
        elif opt[0] == '-p': nproc = int(opt[1])
        else:
            usage(progname)
            return 128

    # There must be at least three file names
    if len(args) < 2:
        usage(progname)
        return 128

    # If the coefficients have zero imaginary parts, cast them as real
    a, b = [c if np.iscomplex(c) else c.real for c in [a, b]]

    # Make sure that the shapes of all of the inputs agree
    inputs = [mio.Slicer(arg) for arg in args[1:]]
    if tuple(inputs[0].shape) != tuple(inputs[1].shape):
        raise ValueError('Array sizes must agree')

    # Determine the output type based on the greater of the two precisions
    chtypes = [np.dtype(i.dtype).char for i in inputs]
    # Determine if a complex value (uppercase code) exists
    if True in [c.isupper() for c in chtypes]: cplx = True
    elif np.iscomplex(a) or np.iscomplex(b): cplx = True
    else: cplx = False
    # Grab the highest precision and render it complex if necessary
    otype = sorted(c.lower() for c in chtypes)[0]
    if cplx: otype = otype.upper()
    # Now create the output file, truncating if necessary
    output = mio.Slicer(args[0], inputs[0].shape, np.dtype(otype).type, True)
    nslice = output.shape[-1]

    # Compute, in parallel, the slice sums
    p = multiprocessing.Pool(processes=nproc)
    p.map(caxpby,
          ([i, args[0], a, args[1], b, args[2]] for i in range(nslice)))

    return 0
Exemple #4
0
def filtblks(infile, outfile, stdev, pad, bgv, start, stride, chunk):
    '''
	Open the input file infile, output file outfile (which should exist)
	and loop through the input in strides to filter with a Fourier Gaussian
	of standard deviation stdev. The input is padded by twice the value pad
	and is assumed to have a homogeneous background value bgv.

	The arguments start and stride refer to chunks rather than slices.
	'''
    # Open the files
    inmat = mio.Slicer(infile)
    outmat = mio.Slicer(outfile)

    # Loop through the chunks to process output
    for n in range(start * chunk, inmat.shape[-1], stride * chunk):
        print('Processing chunk', n)
        # Read the chunk
        start = max(0, n - pad)
        finish = min(n + chunk + pad, inmat.shape[-1])
        block = inmat[start:finish]
        outblk = np.zeros_like(block)
        # Filter the block along the three dimensions successively
        gaussian_filter1d(block,
                          stdev,
                          axis=0,
                          output=outblk,
                          mode='constant',
                          cval=bgv)
        gaussian_filter1d(outblk,
                          stdev,
                          axis=1,
                          output=block,
                          mode='constant',
                          cval=bgv)
        gaussian_filter1d(outblk,
                          stdev,
                          axis=2,
                          output=outblk,
                          mode='constant',
                          cval=bgv)
        # Figure out the proper slices of the output block
        istart = n - start
        iend = min(chunk + istart, istart + outmat.shape[-1] - n)
        # Figure out how many slices need to be written
        oend = n + iend - istart
        # Write the block to output, automatically converting types
        outmat[n:oend] = outblk[:, :, istart:iend]
Exemple #5
0
def main(argv=None):
    if argv is None:
        argv = sys.argv[1:]
        progname = sys.argv[0]

    # Default values
    nrpoc = process.preferred_process_count()
    chunk, stdev, pad, bgval = 8, 8, 24, 0.

    optlist, args = getopt.getopt(argv, 'p:c:g:b:h')

    # Parse the options list
    for opt in optlist:
        if opt[0] == '-p': nproc = int(opt[1])
        elif opt[0] == '-c': chunk = int(opt[1])
        elif opt[0] == '-b': bgval = float(opt[1])
        elif opt[0] == '-g':
            kstr = opt[1].split(',')
            pad = int(kstr[0])
            stdev = float(kstr[1])
        else:
            usage(progname)
            return 128

    # The input and output files must be specified
    if len(args) < 2:
        usage(progname)
        return 128

    # Grab the shape of the input file and the number of slices
    infile = mio.Slicer(args[0])
    # The output file must be created and truncated
    outfile = mio.Slicer(args[1], infile.shape, infile.dtype, True)

    try:
        with process.ProcessPool() as pool:
            for n in range(nproc):
                args = (args[0], args[1], stdev, pad, bgval, n, nproc, chunk)
                pool.addtask(target=filtblks, args=args)
            pool.start()
            pool.wait()
    except:
        outfile._backer.truncate(0)
        raise

    return 0
Exemple #6
0
def caxpby(args):
    '''
	For an argument list args = (i, z, a, x, b, y) for integer i; matrix
	file names z, x, y; and constants a, b; compute 

		z[i] = a * x[i] + b * y[i].

	Nothing is returned.
	'''
    # Grab the constants from the argument list
    i, a, b = args[::2]
    # Open the files in the argument list as Slicer objects
    z, x, y = [mio.Slicer(arg) for arg in args[1::2]]
    # Compute and store the output
    z[i] = a * x[i] + b * y[i]
Exemple #7
0
def main (argv = None):
	if argv is None:
		argv = sys.argv[1:]
		progname = sys.argv[0]

	perslice = False
	try: nproc = multiprocessing.cpu_count()
	except NotImplementedError: nproc = 1

	optlist, args = getopt.getopt (argv, 'p:sh')

	# Parse the options list
	for opt in optlist:
		if opt[0] == '-s': perslice = True
		elif opt[0] == '-p': nproc = int(opt[1])
		else:
			usage (progname)
			return 128

	# There must be at least two files to compare
	if len(args) < 2:
		usage (progname)
		return 128

	# Make sure that the shapes of all of the files agree
	sizes = [mio.Slicer(a).shape for a in args]
	for l, r in zip(sizes[:-1], sizes[1:]):
		if tuple(l) != tuple(r): raise ValueError('Array sizes must agree')

	# Grab the number of slices in the reference file
	nslice = sizes[-1][-1]

	# Compute, in parallel, the slice difference norms
	p = multiprocessing.Pool(processes=nproc)
	errs = np.array(p.map(slicerr, (tuple([i] + args) for i in range(nslice))))
	# Normalize the slice differences from each file
	errs = errs[:,:-1] / la.norm(errs[:,-1])

	if perslice:
		# Denominator is averaged over all slices for per-slice errors
		errs *= math.sqrt(nslice)
		for erow in errs: print(' '.join('%-11.6e' % ev for ev in erow))
	else:
		# Collapse the per-slice errors into a global RMS error
		for i, ecol in enumerate(errs.T):
			print('%4d %11.6e' % (i, la.norm(ecol)))

	return 0
Exemple #8
0
def slicerr(args):
	'''
	For an argument list
	
		args = (i, <file1>, [...], <ref>),

	return the Frobenius error of the differences between slice i in each
	file and the reference. The last returned value is the Frobenius norm
	of slice i of the reference.
	'''
	i = args[0]
	files = [mio.Slicer(a) for a in args[1:]]
	# Compute the squared magnitude sums
	df = [la.norm(f[i] - files[-1][i]) for f in files[:-1]]
	# Add the reference norm
	df += [la.norm(files[-1][i])]

	return df
Exemple #9
0
        elif opt[0] == '-n': n = int(opt[1])
        else:
            usage(execname)
            sys.exit(128)

    if len(args) < 2:
        usage(execname)
        sys.exit(128)

    # Grab the number of samples of the polar angle
    nt = int(args[0])

    # Compute the polar samples as Gauss-Lobatto nodes or regular samples
    theta = harmonic.polararray(nt, not regular)

    # Build a generator of cell coordinates
    hc = n / 2. + 0.5
    coords = itertools.product(dc * np.mgrid[-hc + 1:hc], repeat=3)

    # Build the matrix class
    f = wavecl.FarMatrix(theta, dc, iord)

    print("Building %d-by-%d far-field matrix" % (f.nsamp, n**3))

    # Create the output file
    output = mio.Slicer(args[1], [f.nsamp, n**3], np.complex64, True)

    # Build the matrix row-by-row and write it to output
    for i, c in enumerate(coords):
        output[i] = f.fillrow(c)
Exemple #10
0
def fhfft(infile, outfile, groupmap, **kwargs):
    '''
	For a real WaveformSet file infile, perform Hadamard decoding and then
	a DFT of the temporal samples. The Hadamard decoding follows the
	grouping configuration stored in groupmap, a map

		(element index) -> (local Hadamard index, group number)

	that defines Hadamard groups and must agree with the local group
	configuration represented in the input. The resulting transformed
	records will be stored in the output outfile. The nature of outfile
	depends on the optional argument trmap (see below).

	If trmap is not provided, all records will be written as a binary blob;
	the outfile should be a single string providing the location of the
	output. The output will have shape Ns x Nt x Nr, where Ns is the number
	of output samples per waveform (as governed by the spectral or temporal
	windows applied), Nt is the number of input transmit channels, and Nr
	is the number of input receive channels.

	If trmap is provided, outfile should be a one-to-one map from the keys
	of trmap to output files. A WaveformMap object will be created for each
	key in trmap and stored at the location indicated by the corresponding
	value in outfile.

	Output file(s) will be created or truncated.

	Any TGC parameters in the input, accessible as wset.context['tgc'],
	will be used to adjust the amplitudes of the waveforms prior to
	applying Hadamard and Fourier transforms.

	The kwargs contain optional values or default overrides:

	* freqs (default: None): When not None, a sequence (start, end)
	  to be passed as slice(start, end) to bandpass filter the input after
	  Hadamard decoding.

	* rolloff (default: None): When not None, an integer that defines the
	  half-width of a Hann window that rolls off the bandpass filter
	  specified in freqs. Ignored if freqs is not provided.

	* nsamp (default: None): The length of the time window over which
	  waveforms are considered (and DFTs are performed), starting from
	  global time 0 (i.e., without consideration for input F2C). If None,
	  the value of nsamp in the input is used.

	  ** NOTE: Because the time window always starts at global time 0,
	  a waveform with a data window (start, length) will be cropped when
	  (f2c + start + length) > nsamp, even if nsamp is the value encoded in
	  the file.

	* tgcsamps (default: 16 [for integer datatypes] or 0 [else]): The
	  number of temporal samples to which a single TGC parameter applies.
	  Signals will be scaled by an appropriate section of the multiplier

	    mpy = (invtgc[:,np.newaxis] *
		    np.ones((ntgc, tgcsamps), dtype=np.float32)).ravel('C'),

	  where the values invtgc = 10.**(-wset.context['tgc'] / 20.) and
	  ntgc = len(wset.context['tgc']). The multiplier mpy is defined over a
	  window that starts at file sample 0 (global time wset.f2c).

	  Set tgcsamps to 0 (or None) to disable compensation. If the
	  WaveformSet includes TGC parameters and tgcsamps is a positive
	  integer, then len(mpy) must be at least long enough to encompass all
	  data windows encoded in the file.

	* tgcmap (default: None): If provided, should be a two-column, rank-2
	  Numpy array (or compatible sequence) that relates nominal gains in
	  column 0 to actual gains in column 1. The rows of the array will be
	  used as control points in a piecewise linear interpolation (using
	  numpy.interp) that will map TGC parameters specified in the
	  WaveformSet file to actual gains. In other words, the TGC values
	  described above will be replaced with

		tgc = np.interp(tgc, tgcmap[:,0], tgcmap[:,1])

	  whenever tgcmap is provided.

	* tdout (default: False): Set to True to output time-domain waveforms
	  rather than spectral samples. Preserves input acquisition windows.

	* signs (default: None): When not None, should be a sequence of length
	  wset.txgrps.size that specifies a 1 for any local Hadamard index
	  (corresponding to lines in the file) that should be negated, and 0
	  anywhere else. Ignored when an FHT is not performed.

	* trmap (default: None): If provided, must be a map from a label
	  (referencing an output location in the map outfile) to a map from
	  receive indices to lists of transmit indices that, together, identify
	  transmit-receive pairs to extract from the input.

	* start (default: 0) and stride (default: 1): For an input WaveformSet
	  wset, process receive channels in wset.rxidx[start::stride].

	* lock (default: None): If not None, it should be a context manager
	  that is invoked to serialize writes to output.

	* event (default: None): Only used then trmap is not provided. If not
	  None, event.set() and event.wait() are called to ensure the output
	  header is written to the binary-blob output before records are
	  appended. The value event.is_set() should be False prior to
	  execution.
	'''
    # Override acquisition window, if desired
    nsamp = kwargs.pop('nsamp', None)

    # Grab synchronization mechanisms
    try:
        lock = kwargs.pop('lock')
    except KeyError:
        lock = multiprocessing.Lock()
    try:
        event = kwargs.pop('event')
    except KeyError:
        event = multiprocessing.Event()

    # Grab FFT and FHT switches and options
    tdout = kwargs.pop('tdout', False)
    freqs = kwargs.pop('freqs', None)
    rolloff = kwargs.pop('rolloff', None)
    dofft = (freqs is not None) or not tdout

    if freqs is not None:
        flo, fhi = freqs
        if rolloff and not 0 < rolloff < (fhi - flo) // 2:
            raise ValueError(
                'Rolloff must be None or less than half bandwidth')

    # Grab striding information
    start = kwargs.pop('start', 0)
    stride = kwargs.pop('stride', 1)

    # Grab sign map information
    signs = kwargs.pop('signs', None)

    # Grab the number of samples per TGC value and an optional gain map
    tgcsamps = kwargs.pop('tgcsamps', None)
    tgcmap = kwargs.pop('tgcmap', None)

    trmap = kwargs.pop('trmap', None)

    if len(kwargs):
        raise TypeError(f"Unrecognized keyword '{next(iter(kwargs))}'")

    # Open the input and create a corresponding output
    wset = WaveformSet.load(infile)

    # Pull default sample count from input file
    if nsamp is None: nsamp = wset.nsamp
    elif wset.nsamp < nsamp: wset.nsamp = nsamp

    # Handle TGC compensation if necessary
    try:
        tgc = np.asarray(wset.context['tgc'], dtype=np.float32)
    except (KeyError, AttributeError):
        tgc = np.array([], dtype=np.float32)

    if tgcmap is not None:
        # Make sure that the TGC map is sorted and interpolate
        tgx, tgy = zip(*sorted((k, v) for k, v in tgcmap))
        # TGC curves are always float32, regardless of tgcmap types
        tgc = np.interp(tgc, tgx, tgy).astype(np.float32)

    # Pick a suitable default value for tgcsamps
    if tgcsamps is None:
        tgcsamps = 16 if np.issubdtype(wset.dtype, np.integer) else 0

    # Linearize, invert, and expand the TGC curves
    tgc = ((10.**(-tgc[:, np.newaxis] / 20.) * np.ones(
        (len(tgc), tgcsamps), dtype=np.float32))).ravel('C')

    # Figure out the data type of compensated waveforms
    if len(tgc): itype = np.dtype(wset.dtype.type(0) * tgc.dtype.type(0))
    else: itype = wset.dtype

    # Make sure that the data type is always floating-point
    if not np.issubdtype(itype, np.floating): itype = np.dtype('float64')

    # Create a WaveformSet object to hold the ungrouped data
    ftype = _r2c_datatype(itype)
    otype = ftype if not tdout else itype

    # Make sure the WaveformSet has a local configuration
    try:
        gcount, gsize = wset.txgrps
    except TypeError:
        raise ValueError('A valid Tx-group configuration is required')

    if gsize < 1 or (gsize & (gsize - 1)):
        raise ValueError('Hadamard length must be a positive power of 2')

    # Validate local portion of the group map and assign
    wset.groupmap = groupmap

    if signs is not None:
        # Ensure signs has values 0 or 1 in the right type
        signs = np.asarray([1 - 2 * s for s in signs], dtype=itype)
        if signs.ndim != 1 or len(signs) != gsize:
            msg = f'Sign list must have shape ({wset.txgrps[1]},)'
            raise ValueError(msg)

    # Identify all FHTs represented by stored transmission indices
    fhts = {}
    for i in wset.txidx:
        g, l = i // gsize, i % gsize
        try:
            fhts[g].append(l)
        except KeyError:
            fhts[g] = [l]

    # Verify that all FHTs are complete
    for g, ll in fhts.items():
        if len(ll) != gsize:
            raise ValueError(f'FHT group {gi} is incomplete')
        if any(i != j for i, j in enumerate(sorted(ll))):
            raise ValueError(f'FHT group {gi} has improper local indices')

    # Map each FHT group to a list of row indices for the FHT
    # and each element corresponding to an FHT output to row indices
    gidx = lambda l, g: g * gsize + l
    fhts = {g: [wset.tx2row(gidx(l, g)) for l in range(gsize)] for g in fhts}
    invgroups = {(l, g): i for i, (l, g) in wset.groupmap.items()}
    el2row = {
        invgroups[l, g]: wset.tx2row(gidx(l, g))
        for g in fhts for l in range(gsize)
    }

    # Create intermediate (FHT) and output (FHFFT) arrays
    # FFT axis is contiguous for FFT performance
    b = pyfftw.empty_aligned((wset.ntx, nsamp), dtype=itype, order='C')

    if dofft:
        # Create FFT output and a plan
        cdim = (wset.ntx, nsamp // 2 + 1)
        c = pyfftw.empty_aligned(cdim, dtype=ftype, order='C')
        fwdfft = pyfftw.FFTW(b, c, axes=(1, ), direction='FFTW_FORWARD')

        # Create an inverse FFT plan for time-domain output
        if tdout:
            invfft = pyfftw.FFTW(c, b, axes=(1, ), direction='FFTW_BACKWARD')

        # Find the spectral window of interest
        fswin = specwin(cdim[1], freqs)

        # Try to build bandpass tails
        if rolloff: tails = np.hanning(2 * int(rolloff))
        else: tails = np.array([])

    if trmap:
        # Identify the subset of receive channels needed
        allrx = reduce(set.union, (trm.keys() for trm in trmap.values()),
                       set())
        rxneeded = sorted(allrx.intersection(wset.rxidx))[start::stride]
    else:
        rxneeded = wset.rxidx[start::stride]

        # In blob mode, the first write must create a header
        with lock:
            if not event.is_set():
                # Create a sliced binary matrix output
                windim = (nsamp if tdout else fswin.length, wset.ntx, wset.nrx)
                mio.Slicer(outfile, dtype=otype, trunc=True, dim=windim)
                event.set()

        # Ensure the output header has been written
        event.wait()

        # Map receive channels to rows (slabs) in the output
        rx2slab = dict((i, j) for (j, i) in enumerate(sorted(wset.rxidx)))
        # Map transmit channels to decoded FHT rows
        outrows = [r for (e, r) in sorted(el2row.items())]

        outbin = mio.Slicer(outfile)

    for rxc in rxneeded:
        # Find the input window relative to 0 f2c
        iwin = wset.getheader(rxc).win.shift(wset.f2c)
        owin = (0, nsamp)

        try:
            # Find overlap of global input and output windows
            ostart, istart, dlength = cutil.overlap(owin, iwin)
        except TypeError:
            # Default to 0-length windows at start of acquisition
            iwin = Window(0, 0, nonneg=True)
            owin = Window(0, 0, nonneg=True)
        else:
            # Convert input and output windows from global f2c to file f2c
            iwin = Window(istart, dlength, nonneg=True)
            owin = Window(ostart, dlength, nonneg=True)

        # Read the data over the input window
        data = wset.getrecord(rxc, window=iwin)[1]

        # Clear the data array
        b[:, :] = 0.
        ws, we = owin.start, owin.end

        if iwin.length and gsize > 1:
            # Perform grouped Hadamard transforms with optional sign flips
            for grp, rows in fhts.items():
                # Ensure FHT axis is contiguous for performance
                dblk = np.asfortranarray(data[rows, :])
                b[rows, ws:we] = fwht(dblk, axes=0) / gsize
                if signs is not None: b[rows, ws:we] *= signs[:, np.newaxis]
        else: b[:, ws:we] = data

        # Time-gain compensation, if necessary
        if len(tgc) and iwin.length:
            twin = (0, len(tgc))
            try:
                tstart, istart, dlength = cutil.overlap(twin, iwin)
                if dlength != iwin.length: raise ValueError
            except (TypeError, ValueError):
                raise ValueError(
                    f'TGC curve does not encompass data for channel {rxc}')
            b[:, ws:we] *= tgc[np.newaxis, tstart:tstart + dlength]

        if dofft:
            fwdfft()

            # Suppress content out of the band
            c[:, :fswin.start] = 0.
            c[:, fswin.end:] = 0.

            # Bandpass filter the spectral samples
            if len(tails) > 0:
                ltails = len(tails) // 2
                c[:, fswin.start:fswin.start +
                  ltails] *= tails[np.newaxis, :ltails]
                c[:, fswin.end - ltails:fswin.end] *= tails[np.newaxis,
                                                            -ltails:]

            # Revert to time-domain representation if necessary
            if tdout: invfft()

        if not trmap:
            # Write the binary blob for this receive channel
            orow = rx2slab[rxc]
            with lock:
                if tdout: outbin[orow] = b[outrows, :].T
                else: outbin[orow] = c[outrows, fswin.start:fswin.end].T
            # Nothing more to do in blob mode
            continue

        # Slice desired range from output data
        if tdout:
            dblock = b[:, ws:we]
            dstart = ws
        else:
            dblock = c[:, fswin.start:fswin.end]
            dstart = fswin.start

        for label, trm in trmap.items():
            # Pull tx list for this tier and rx channel, if possible
            try:
                tl = trm[rxc]
            except KeyError:
                tl = []

            if not len(tl): continue

            # Collect all transmissions for this rx channel
            wmap = WaveformMap()
            for t in tl:
                # Make sure transmission is represented in output
                try:
                    row = el2row[t]
                except KeyError:
                    continue

                wave = Waveform(nsamp, dblock[row], dstart)
                wmap[t, rxc] = wave

            # Flush the waveform map to disk
            with lock:
                wmap.store(outfile[label], append=True)
Exemple #11
0
def main(argv=None):
    if argv is None:
        argv = sys.argv[1:]
        progname = sys.argv[0]

    # Default values
    random = True
    nproc = process.preferred_process_count()
    chunk = 8

    optlist, args = getopt.getopt(argv, 'p:nd:s:c:g:h')

    # Extra arguments are added as kwargs
    kwargs = {}

    # Parse the options list
    for opt in optlist:
        if opt[0] == '-n': random = False
        elif opt[0] == '-p': nproc = int(opt[1])
        elif opt[0] == '-d': kwargs['scatden'] = float(opt[1])
        elif opt[0] == '-s': kwargs['scatsd'] = float(opt[1])
        elif opt[0] == '-c': chunk = int(opt[1])
        elif opt[0] == '-g':
            kstr = opt[1].split(',')
            kwargs['smoothp'] = [int(kstr[0]), float(kstr[1])]
        else:
            usage(progname)
            return 128

    # The segmentation file and the parameter file must be specified
    if len(args) < 5:
        usage(progname)
        return 128

    # Read the tissue parameters
    pmat = np.loadtxt(args[1])
    # Split the parameters into sound speed, attenuation and density
    params = [p.tolist() for p in [pmat[:, :2], pmat[:, 2:4], pmat[:, 4:6]]]
    # Eliminate the standard deviation if random scatterers are not desired
    if not random: params = [[[p[0], None] for p in pv] for pv in params]

    # Grab the shape of the segmentation file and the number of slices
    segfile = mio.Slicer(args[0])
    # The output files need to be created and truncated
    outputs = args[2:]
    outfiles = [
        mio.Slicer(o, segfile.shape, segfile.dtype, True) for o in outputs
    ]

    try:
        with process.ProcessPool() as pool:
            for n in range(nproc):
                args = (args[0], outputs, params, n, nproc, chunk)
                pool.addtask(target=mapblks, args=args, kwargs=kwargs)
            pool.start()
            pool.wait()
    except:
        for f in outfiles:
            f._backer.truncate(0)
        raise

    return 0
Exemple #12
0
		elif opt[0] == '-i': iord = int(opt[1])
		elif opt[0] == '-t': tol = float(opt[1])
		elif opt[0] == '-g': gpu = regular = True
		else:
			usage(execname)
			sys.exit(128)

	if len(args) < 3:
		usage(execname)
		sys.exit(128)

	# Grab the number of interpolated polar samples
	ntf = int(args[0])

	# Create a generator to read the matrix column by column
	inmat = mio.Slicer(args[1])

	# Compute the input number of samples of the polar angle
	ntc = int(2. + math.sqrt(4. + 0.5 * (inmat.shape[0] - 10.)))

	# The total number of output samples
	nsamp = 2 * (ntf - 2)**2 + 2

	if not gpu:
		# Build coarse and fine polar samples
		thetas = [harmonic.polararray(n, not regular) for n in [ntc, ntf]]

		# Create the interpolation matrix
		if iord > 0: a = harmonic.SphericalInterpolator(thetas, iord)
		else: a = harmonic.HarmonicSpline(thetas, tol)
	else: a = clinterp.HarmonicSpline(ntc, 2 * (ntc - 2), tol)