Exemple #1
0
    def test_lmdb_creation(self):

        params = nn_params.copy()
        params.update({'nclasses': n_classes})

        # Create dataset
        X, Y = datasets.load_digits(return_X_y=True)
        X = preprocessing.StandardScaler().fit_transform(X)
        x_train, x_test, y_train, y_test = model_selection.train_test_split(
            X, Y, test_size=test_size, random_state=seed)

        # Save data in .svm format
        tr_svm_f, tr_lmdb_f = os.path.abspath('x_train.svm'), os.path.abspath(
            'x_train.lmdb')
        te_svm_f, te_lmdb_f = os.path.abspath('x_test.svm'), os.path.abspath(
            'x_test.lmdb')
        vocab_path = os.path.abspath('vocab.dat')

        datasets.dump_svmlight_file(x_train, y_train, tr_svm_f)
        datasets.dump_svmlight_file(x_test, y_test, te_svm_f)

        lmdb_utils.create_lmdb_from_svm(svm_path=tr_svm_f,
                                        lmdb_path=tr_lmdb_f,
                                        vocab_path=vocab_path,
                                        **params)
        lmdb_utils.create_lmdb_from_svm(svm_path=te_svm_f,
                                        lmdb_path=te_lmdb_f,
                                        **params)

        tr_lmdb = SVMConnector(path=tr_svm_f,
                               lmdb_path=tr_lmdb_f,
                               vocab_path=vocab_path)
        te_lmdb = SVMConnector(path=te_svm_f, lmdb_path=te_lmdb_f)

        optimizer = GenericSolver(solver_type='SGD',
                                  base_lr=0.01,
                                  iterations=100)
        clf = MLP(**params)
        clf.fit(tr_lmdb, validation_data=[te_lmdb], solver=optimizer)

        ytr_prob = clf.predict_proba(tr_lmdb)
        acc = metrics.accuracy_score(y_train, ytr_prob.argmax(-1))
        assert acc > 0.7

        os_utils._remove_files([tr_svm_f, te_svm_f, vocab_path])
        os_utils._remove_dirs([tr_lmdb_f, te_lmdb_f])
Exemple #2
0
def create_lmdb_from_svm(svm_path,
                         lmdb_path,
                         vocab_path=None,
                         host='localhost',
                         port=8085,
                         nclasses=2,
                         gpu=True,
                         tmp_folder=None):

    if os.path.exists(lmdb_path):
        print("warning: {} exist, overwriting it".format(lmdb_path))

    tmp_folder = tempfile.mkdtemp(
        prefix="pydd_", dir=tmp_folder) if tmp_folder else tempfile.mkdtemp(
            prefix="pydd_")

    train_data = SVMConnector(path=svm_path)
    optimizer = GenericSolver(solver_type='SGD', base_lr=0.01, iterations=1)

    clf = MLP(host=host,
              port=port,
              nclasses=nclasses,
              gpu=gpu,
              repository=tmp_folder)
    clf.fit(train_data, solver=optimizer)

    shutil.move(os.path.join(tmp_folder, "train.lmdb"), lmdb_path)
    if vocab_path:
        shutil.move(os.path.join(tmp_folder, "vocab.dat"), vocab_path)

    # delete service
    clf.delete_service(clf.sname, clear='lib')

    # delete tmp_folder
    shutil.rmtree(tmp_folder)

    return lmdb_path, vocab_path
# create dataset
X, y = datasets.load_digits(n_class=n_classes, return_X_y=True)
X = preprocessing.StandardScaler().fit_transform(X)
xtr, xte, ytr, yte = model_selection.train_test_split(X, y, **split_params)

# create and save train.svm and test.svm
tr_f = os.path.abspath('x_train.svm')
te_f = os.path.abspath('x_test.svm')
datasets.dump_svmlight_file(xtr, ytr, tr_f)
datasets.dump_svmlight_file(xte, yte, te_f)

# Define models and class weights
clf = MLP(**params)

train_data, test_data = SVMConnector(path=tr_f), SVMConnector(path=te_f)
logs = clf.fit(train_data,
               validation_data=[test_data],
               solver=solver,
               class_weights=class_weights,
               batch_size=128)

params.update({"resume": True})
clf = MLP(**params)
logs = clf.fit(train_data,
               validation_data=[test_data],
               solver=solver,
               class_weights=class_weights,
               batch_size=128)

yte_pred = clf.predict(test_data)
Exemple #4
0
X = preprocessing.StandardScaler().fit_transform(X)
xtr, xte, ytr, yte = model_selection.train_test_split(X,
                                                      Y,
                                                      test_size=test_size,
                                                      random_state=seed)
tr_f = os.path.abspath('x_train.svm')
te_f = os.path.abspath('x_test.svm')

#####################
# create connectors #
#####################
# array connector
xtr_arr, xte_arr = ArrayConnector(xtr, ytr), ArrayConnector(xte, yte)

# svm connector
xtr_svm, xte_svm = SVMConnector(tr_f), SVMConnector(te_f)

# array sparse connector
xtr_sparse, xte_sparse = ArrayConnector(csc_matrix(xtr), ytr), ArrayConnector(
    csc_matrix(xte), yte)


class TestSVM(object):
    def test_classification(self):

        params = nn_params.copy()
        params.update({'nclasses': n_classes})
        optimizer = GenericSolver(**solver_param)
        datasets.dump_svmlight_file(xtr, ytr, tr_f)
        datasets.dump_svmlight_file(xte, yte, te_f)
Exemple #5
0
    port = 8080
    iteration=100
    lr=0.01
    gpu=False

    X, y = datasets.load_digits(n_class=n_classes, return_X_y=True)
    X = preprocessing.StandardScaler().fit_transform(X)
    x_train, x_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=test_size, random_state=seed)
    tr_f = os.path.abspath('x_train.svm')
    te_f = os.path.abspath('x_test.svm')
    datasets.dump_svmlight_file(x_train, y_train, tr_f)
    datasets.dump_svmlight_file(x_test, y_test, te_f)

    # train_data = ArrayConnector(x_train, y_train)
    # val_data = ArrayConnector(x_train, y_train)
    train_data = SVMConnector(tr_f)
    val_data = SVMConnector(te_f)

    clf = MLP(host=host, port=port, nclasses=n_classes, layers=[100], gpu=gpu)
    solver = GenericSolver(iterations=iteration, test_interval=30, solver_type="SGD", base_lr=lr)
    clf.fit(train_data, validation_data=[val_data],  solver=solver)
    clf.predict_proba(train_data)

    clf.fit(train_data, validation_data=[val_data], solver=solver)
    y_pred = clf.predict_proba(train_data)

    clf = LR(host=host, port=port, nclasses=n_classes, gpu=gpu)
    solver = GenericSolver(iterations=iteration, solver_type="SGD", base_lr=lr)
    clf.fit(train_data, solver=solver)
    y_pred = clf.predict_proba(train_data)
Exemple #6
0
    x_train, x_test, y_train, y_test = model_selection.train_test_split(
        X, Y, test_size=test_size, random_state=seed)

    # Save data in .svm format
    tr_svm_f, tr_lmdb_f = os.path.abspath('x_train.svm'), os.path.abspath(
        'x_train.lmdb')
    te_svm_f, te_lmdb_f = os.path.abspath('x_test.svm'), os.path.abspath(
        'x_test.lmdb')
    vocab_path = os.path.abspath('vocab.dat')

    datasets.dump_svmlight_file(x_train, y_train, tr_svm_f)
    datasets.dump_svmlight_file(x_test, y_test, te_svm_f)

    # create lmdb and vocab file
    create_lmdb_from_svm(svm_path=tr_svm_f,
                         lmdb_path=tr_lmdb_f,
                         vocab_path=vocab_path,
                         **params)
    create_lmdb_from_svm(svm_path=te_svm_f, lmdb_path=te_lmdb_f, **params)

    tr_data = SVMConnector(path=tr_svm_f,
                           lmdb_path=tr_lmdb_f,
                           vocab_path=vocab_path)
    te_data = SVMConnector(path=tr_svm_f, lmdb_path=tr_lmdb_f)

    optimizer = GenericSolver(solver_type='SGD', base_lr=0.01, iterations=100)
    clf = MLP(**params)
    clf.fit(tr_data, validation_data=[te_data], solver=optimizer)

    y_pred_lmdb = clf.predict_proba(te_data)
Exemple #7
0
# create and save train.svm and test.svm
tr_f = os.path.abspath("{}/x_train.svm".format(folder))
te_f = os.path.abspath("{}/x_test.svm".format(folder))
datasets.dump_svmlight_file(xtr, ytr, tr_f)
datasets.dump_svmlight_file(xte, yte, te_f)

# create lmdb dataset
tr_lmdb = os.path.abspath("{}/train.lmdb".format(folder))
te_lmdb = os.path.abspath("{}/test.lmdb".format(folder))
vocab_path = os.path.abspath("{}/vocab.dat".format(folder))
lmdb_utils.create_lmdb_from_svm(tr_f, tr_lmdb, vocab_path, **params)
lmdb_utils.create_lmdb_from_svm(te_f, te_lmdb, **params)


# create lmdb connectors
train_data = SVMConnector(path=tr_f, lmdb_path=tr_lmdb, vocab_path=vocab_path)
test_data = SVMConnector(path=te_f, lmdb_path=te_lmdb)


# Training model from lmdb data
clf = MLP(**params)
optimizer = GenericSolver(solver_type='SGD', iterations=500, base_lr=0.01)
logs = clf.fit(train_data, validation_data=[test_data], solver=optimizer)

yte_pred = clf.predict(test_data)
report = metrics.classification_report(yte, yte_pred)
print(report)

os_utils._remove_dirs([folder])
Exemple #8
0
port = 8080
np.random.seed(seed)  # for reproducibility
split_params = {'test_size': 0.2, 'random_state': seed}
booster_params = {"max_depth": 10, "subsample": 0.8, "eta": 0.3}

# create dataset
X, y = datasets.make_classification(n_samples=n_samples,
                                    class_sep=0.4,
                                    n_features=n_features,
                                    n_classes=n_classes,
                                    random_state=seed)
x_train, x_test, y_train, y_test = model_selection.train_test_split(
    X, y, **split_params)

# store dataset
train_path = os.path.abspath('x_train.svm')
test_path = os.path.abspath('x_test.svm')
datasets.dump_svmlight_file(x_train, y_train, train_path)
datasets.dump_svmlight_file(x_test, y_test, test_path)

# train model
train_data, val_data = SVMConnector(train_path), SVMConnector(test_path)

clf = XGB(host=host, port=port, nclasses=n_classes)
clf.fit(train_data, validation_data=[val_data], **booster_params)

# predict/metrics
y_test_prob = clf.predict_proba(test_path)
y_test_pred = y_test_prob.argmax(-1)
print(metrics.classification_report(y_test, y_test_pred))