print('Reading phenotypes') pyd.io.read_phenotypes(peds, args.phen) print('Reading genotypes') genodata = pyd.io.plink.read_plink(pedfile=args.geno, mapfile=args.map) peds.update(genodata) print('Fitting polygenic model') null_model = MixedModel(peds, outcome=args.outcome, fixed_effects=args.fixefs) null_model.add_genetic_effect() null_model.fit_model() null_model.maximize(method=args.maxmethod, verbose=args.verbose, restricted=False) null_model.summary() llik_null = null_model.loglikelihood() def parse_range(rangestr): chrom, span = rangestr.split(':') chrom = chrom.replace('chr', '') span = [int(x) for x in span.split('-')] return chrom, span[0], span[1] granges = [parse_range(x) for x in args.range] def tableformat(*cells): return ''.join(['{:<12}'.format(x) for x in cells])
print('Calculating Kinships') m.add_genetic_effect() if args.d7: m.add_genetic_effect(kind='dominance') print('Done') m.fit_model() if args.center: m.y = m._centery() if args.inflate: m.y *= 100 if args.garbley: m.y = np.matrix(np.random.normal(10, 5, len(m.y))).T starts = args.starts if starts is not None: starts = [float(x) for x in starts] m.maximize(method=args.maxmethod, verbose=True, starts=starts, restricted=args.reml) m.summary() if args.interact: try: from IPython import embed embed() except ImportError: print("IPython not found!")
m = MixedModel(peds, outcome=args.outcome, fixed_effects=args.fixefs) print('Calculating Kinships') m.add_genetic_effect() if args.d7: m.add_genetic_effect(kind='dominance') print('Done') m.fit_model() if args.inflate: m.y *= 100 if args.garbley: m.y = np.matrix(np.random.normal(10, 5, len(m.y))).T starts = args.starts if starts is not None: starts = [float(x) for x in starts] m.maximize(method=args.maxmethod, verbose=True, starts=starts, restricted=args.reml) m.summary() if args.interact: try: from IPython import embed embed() except ImportError: print("IPython not found!")