Exemple #1
0
def maskFiles(FH, isAtlas, numAtlases=1):
    """ Assume that if there is more than one atlas, multiple
        masks were generated and we need to perform a voxel_vote. 
        Otherwise, assume we are using inputLabels from crossing with
        only one atlas. 
    """
    #MF TODO: Make this more general to handle pairwise option. 
    p = Pipeline()
    if not isAtlas:
        if numAtlases > 1:
            voxel = voxelVote(FH, False, True)
            p.addStage(voxel)
            mincMathInput = voxel.outputFiles[0]  
        else:
            mincMathInput = FH.returnLabels(True)[0]
        FH.setMask(mincMathInput)
    else:
        mincMathInput = FH.getMask()
    mincMathOutput = fh.createBaseName(FH.resampledDir, FH.basename)
    mincMathOutput += "_masked.mnc"   
    logFile = fh.logFromFile(FH.logDir, mincMathOutput)
    cmd = ["mincmath"] + ["-clobber"] + ["-mult"]
    cmd += [InputFile(mincMathInput)] + [InputFile(FH.getLastBasevol())] 
    cmd += [OutputFile(mincMathOutput)]
    mincMath = CmdStage(cmd)
    mincMath.setLogFile(LogFile(logFile))
    p.addStage(mincMath)
    FH.setLastBasevol(mincMathOutput)
    return(p)
Exemple #2
0
def maskFiles(FH, isAtlas, numAtlases=1):
    """ Assume that if there is more than one atlas, multiple
        masks were generated and we need to perform a voxel_vote. 
        Otherwise, assume we are using inputLabels from crossing with
        only one atlas. 
    """
    #MF TODO: Make this more general to handle pairwise option.
    p = Pipeline()
    if not isAtlas:
        if numAtlases > 1:
            voxel = voxelVote(FH, False, True)
            p.addStage(voxel)
            mincMathInput = voxel.outputFiles[0]
        else:
            mincMathInput = FH.returnLabels(True)[0]
        FH.setMask(mincMathInput)
    else:
        mincMathInput = FH.getMask()
    mincMathOutput = fh.createBaseName(FH.resampledDir, FH.basename)
    mincMathOutput += "_masked.mnc"
    logFile = fh.logFromFile(FH.logDir, mincMathOutput)
    cmd = ["mincmath"] + ["-clobber"] + ["-mult"]
    cmd += [InputFile(mincMathInput)] + [InputFile(FH.getLastBasevol())]
    cmd += [OutputFile(mincMathOutput)]
    mincMath = CmdStage(cmd)
    mincMath.setLogFile(LogFile(logFile))
    p.addStage(mincMath)
    FH.setLastBasevol(mincMathOutput)
    return (p)
Exemple #3
0
 def iterate(self):
     if not self.maxPairs:
         xfmsToAvg = {}
         lsq12ResampledFiles = {}
         for inputFH in self.inputs:
             """Create an array of xfms, to compute an average lsq12 xfm for each input"""
             xfmsToAvg[inputFH] = []
             for targetFH in self.inputs:
                 if inputFH != targetFH:
                     lsq12 = LSQ12(inputFH,
                                   targetFH,
                                   self.blurs,
                                   self.stepSize,
                                   self.useGradient,
                                   self.simplex)
                     self.p.addPipeline(lsq12.p)
                     xfmsToAvg[inputFH].append(inputFH.getLastXfm(targetFH))
             
             """Create average xfm for inputFH using xfmsToAvg array"""
             cmd = ["xfmavg"]
             for i in range(len(xfmsToAvg[inputFH])):
                 cmd.append(InputFile(xfmsToAvg[inputFH][i]))
             avgXfmOutput = createBaseName(inputFH.transformsDir, inputFH.basename + "-avg-lsq12.xfm")
             cmd.append(OutputFile(avgXfmOutput))
             xfmavg = CmdStage(cmd)
             xfmavg.setLogFile(LogFile(logFromFile(inputFH.logDir, avgXfmOutput)))
             self.p.addStage(xfmavg)
             self.lsq12AvgXfms[inputFH] = avgXfmOutput
             """ resample brain and add to array for mincAveraging"""
             if not self.likeFile:
                 likeFile=inputFH
             else:
                 likeFile=self.likeFile
             rslOutput = createBaseName(inputFH.resampledDir, inputFH.basename + "-resampled-lsq12.mnc")
             res = ma.mincresample(inputFH, 
                                   inputFH,
                                   transform=avgXfmOutput, 
                                   likeFile=likeFile, 
                                   output=rslOutput,
                                   argArray=["-sinc"])   
             self.p.addStage(res)
             lsq12ResampledFiles[inputFH] = rslOutput
         """ After all registrations complete, setLastBasevol for each subject to be
             resampled file in lsq12 space. We can then call mincAverage on fileHandlers,
             as it will use the lastBasevol for each by default."""
         for inputFH in self.inputs:
             inputFH.setLastBasevol(lsq12ResampledFiles[inputFH])
         """ mincAverage all resampled brains and put in lsq12Directory""" 
         self.lsq12Avg = abspath(self.lsq12Dir) + "/" + basename(self.lsq12Dir) + "-pairs.mnc" 
         self.lsq12AvgFH = RegistrationPipeFH(self.lsq12Avg, basedir=self.lsq12Dir)
         avg = ma.mincAverage(self.inputs, 
                              self.lsq12AvgFH, 
                              output=self.lsq12Avg,
                              defaultDir=self.lsq12Dir)
         self.p.addStage(avg)
     else:
         print "Registration using a specified number of max pairs not yet working. Check back soon!"
         sys.exit()
Exemple #4
0
    def __init__(
            self,
            inSource,
            inTarget,
            output=None,  # ability to specify output transform when using strings for input
            logFile=None,
            maskFile=None,
            defaultDir="transforms",
            blur=0.56,
            resample_step=4,
            registration_step=10,
            w_translations=8,
            rotational_range=50,
            rotational_interval=10,
            mousedata=False):

        CmdStage.__init__(self,
                          None)  #don't do any arg processing in superclass
        # handling of the input files
        try:
            if rf.isFileHandler(inSource, inTarget):
                self.source = inSource.getBlur(fwhm=blur)
                self.target = inTarget.getBlur(fwhm=blur)
                if (output == None):
                    self.output = inSource.registerVolume(inTarget, defaultDir)
                else:
                    self.output = output
                if (logFile == None):
                    self.logFile = fh.logFromFile(inSource.logDir, self.output)
                else:
                    self.logFile = logFile
            else:
                # TODO: fix this to work with string input files
                self.source = inSource
                self.target = inTarget
        except:
            print "Failed in putting together RotationalMinctracc command; unexpected error:"
            raise

        # The resolution is used to determine the step size and
        # blurring kernels for the rotational minctracc call. This
        # should be based on the target, not the input file (source)
        highestResolution = rf.returnFinestResolution(inTarget)

        # TODO: finish the following if clause... hahaha
        #if(mousedata):

        self.addDefaults(resample_step * highestResolution,
                         registration_step * highestResolution,
                         w_translations * highestResolution,
                         int(rotational_range), int(rotational_interval))
        # potentially add a mask to the command
        self.finalizeCommand(inTarget, maskFile)
        self.setName()
        self.colour = "green"
Exemple #5
0
 def __init__(self, 
              inSource, 
              inTarget,
              output = None, # ability to specify output transform when using strings for input
              logFile = None,
              maskFile = None,
              defaultDir="transforms",
              blur=0.56,
              resample_step=4,
              registration_step=10,
              w_translations=8,
              rotational_range=50,
              rotational_interval=10,
              mousedata=False):
     
     CmdStage.__init__(self, None) #don't do any arg processing in superclass
     # handling of the input files
     try: 
         if rf.isFileHandler(inSource, inTarget):
             self.source = inSource.getBlur(fwhm=blur)
             self.target = inTarget.getBlur(fwhm=blur)  
             if(output == None):
                 self.output = inSource.registerVolume(inTarget, defaultDir)
             else:
                 self.output = output
             if(logFile == None):
                 self.logFile = fh.logFromFile(inSource.logDir, self.output)
             else:
                 self.logFile = logFile
         else:
             # TODO: fix this to work with string input files
             self.source = inSource
             self.target = inTarget
     except:
         print "Failed in putting together RotationalMinctracc command."
         print "Unexpected error: ", sys.exc_info()
         raise
     
     highestResolution = rf.getFinestResolution(inSource)
     
     # TODO: finish the following if clause... hahaha
     #if(mousedata):
         
     
     self.addDefaults(resample_step     * highestResolution,
                   registration_step * highestResolution,
                   w_translations    * highestResolution,
                   int(rotational_range),
                   int(rotational_interval))
     # potentially add a mask to the command
     self.finalizeCommand(inTarget, maskFile)
     self.setName()
     self.colour = "green"
Exemple #6
0
    def __init__(self, 
                 inFile, 
                 fwhm, 
                 defaultDir="tmp",
                 gradient=False):
        """calls mincblur with the specified 3D Gaussian kernel

        The inputs can be in one of two styles. The first argument can
        be an instance of RegistrationPipeFH, in which case the last
        volume in that instance (i.e. inFile.lastBasevol) will be
        blurred and the output will be determined by its blurFile
        method. Alternately, the inFile can be a string representing a
        filename, in which case the output and logfile will be set based on 
        the inFile name. If the fwhm specified is -1, we do not construct 
        a command.

        """
        
        if fwhm == -1:
            return
        
        CmdStage.__init__(self, None)
        try:
            if isFileHandler(inFile):
                blurlist = inFile.blurFile(fwhm, gradient, defaultDir)
                self.base = blurlist["base"]
                self.inputFiles = [inFile.getLastBasevol()]
                self.outputFiles = [blurlist["file"]]
                self.logFile = blurlist["log"]
                self.name = "mincblur " + str(fwhm) + " " + inFile.basename
                if gradient:
                    self.outputFiles.append(blurlist["gradient"])
            else:
                self.base = str(inFile).replace(".mnc", "")
                self.inputFiles = [inFile]
                blurBase = "".join([self.base, "_fwhm", str(fwhm), "_blur"])
                output = "".join([blurBase, ".mnc"])
                self.outputFiles = [output]
                self.logFile = fh.logFromFile(abspath(curdir), output)
                self.name = "mincblur " + str(fwhm) + " " + basename(inFile)
                if gradient:
                    gradientBase = blurBase.replace("blur", "dxyz")
                    self.outputFiles += ["".join([gradientBase, ".mnc"])] 
        except:
            print "Failed in putting together blur command."
            print "Unexpected error: ", sys.exc_info()
            
        self.cmd = ["mincblur", "-clobber", "-no_apodize", "-fwhm", str(fwhm),
                    self.inputFiles[0], self.base]
        if gradient:
            self.cmd += ["-gradient"]       
        self.colour="blue"
Exemple #7
0
 def linAndNlinDisplacement(self):
     """
        The function calculates both the linear and nonlinear
        portions of the displacement, in order to find 
        pure nonlinear. Common space here is the target (usually
        an average of some sort). We also recentre pure non linear 
        displacement. 
        
     """
     
     """Calculate linear part of non-linear xfm from input to target"""
     lpnl = linearPartofNlin(self.inputFH, self.targetFH)
     self.p.addStage(lpnl)
     self.linearXfm = lpnl.outputFiles[0]
     
     """Calculate full displacement from target to input"""
     self.calcFullDisplacement()
     
     """Calculate pure non-linear displacement from target to input
        1. Concatenate linear and inverse target to input transform to 
           get pure_nlin xfm
        2. Compute mincDisplacement on this transform. 
     """
     nlinXfm = createPureNlinXfmName(self.inputFH, self.invXfm)
     xc = xfmConcat([self.linearXfm, self.invXfm], nlinXfm, fh.logFromFile(self.inputFH.logDir, nlinXfm))
     self.p.addStage(xc)
     nlinDisp = mincDisplacement(self.targetFH, self.inputFH, transform=nlinXfm)
     self.p.addStage(nlinDisp)
     self.nlinDisp = nlinDisp.outputFiles[0]
     
     """Calculate average displacement and re-center non-linear displacement
        if an array of input file handlers was specified on instantiation. """
     
     if self.dispToAvg:
         """Calculate average inverse displacement"""
         avgOutput = abspath(self.targetFH.basedir) + "/" + "average_inv_pure_displacement.mnc"
         logBase = fh.removeBaseAndExtension(avgOutput)
         avgLog = fh.createLogFile(self.targetFH.basedir, logBase)
         avg = mincAverageDisp(self.dispToAvg, avgOutput, logFile=avgLog)
         self.p.addStage(avg)
         """Centre pure nlin displacement by subtracting average from existing"""
         centredBase = fh.removeBaseAndExtension(self.nlinDisp).split("_displacement")[0] 
         centredOut = fh.createBaseName(self.inputFH.statsDir, 
                                        centredBase + "_centred_displacement.mnc")
         cmd = ["mincmath", "-clobber", "-sub", InputFile(self.nlinDisp), 
                InputFile(avgOutput), OutputFile(centredOut)]
         centredDisp = CmdStage(cmd)
         centredDisp.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, centredOut)))
         self.p.addStage(centredDisp)
         """Reset centred displacement to be self.nlinDisp"""
         self.nlinDisp = centredOut
Exemple #8
0
    def __init__(self, inFile, fwhm, defaultDir="tmp", gradient=False):
        """calls mincblur with the specified 3D Gaussian kernel

        The inputs can be in one of two styles. The first argument can
        be an instance of RegistrationPipeFH, in which case the last
        volume in that instance (i.e. inFile.lastBasevol) will be
        blurred and the output will be determined by its blurFile
        method. Alternately, the inFile can be a string representing a
        filename, in which case the output and logfile will be set based on 
        the inFile name. If the fwhm specified is -1, we do not construct 
        a command.

        """

        if fwhm == -1:
            return

        CmdStage.__init__(self, None)
        try:
            if isFileHandler(inFile):
                blurlist = inFile.blurFile(fwhm, gradient, defaultDir)
                self.base = blurlist["base"]
                self.inputFiles = [inFile.getLastBasevol()]
                self.outputFiles = [blurlist["file"]]
                self.logFile = blurlist["log"]
                self.name = "mincblur " + str(fwhm) + " " + inFile.basename
                if gradient:
                    self.outputFiles.append(blurlist["gradient"])
            else:
                self.base = str(inFile).replace(".mnc", "")
                self.inputFiles = [inFile]
                blurBase = "".join([self.base, "_fwhm", str(fwhm), "_blur"])
                output = "".join([blurBase, ".mnc"])
                self.outputFiles = [output]
                self.logFile = fh.logFromFile(abspath(curdir), output)
                self.name = "mincblur " + str(fwhm) + " " + basename(inFile)
                if gradient:
                    gradientBase = blurBase.replace("blur", "dxyz")
                    self.outputFiles += ["".join([gradientBase, ".mnc"])]
        except:
            print "Failed in putting together blur command."
            print "Unexpected error: ", sys.exc_info()

        self.cmd = [
            "mincblur", "-clobber", "-no_apodize", "-fwhm",
            str(fwhm), self.inputFiles[0], self.base
        ]
        if gradient:
            self.cmd += ["-gradient"]
        self.colour = "blue"
Exemple #9
0
    def __init__(self, inputFiles, outputFile, logFile=None):
        CmdStage.__init__(self, None)

        # in case there is a single input file... (it's actually possible)
        if (not (type(inputFiles) is list)):
            inputFiles = [inputFiles]

        self.inputFiles = inputFiles
        self.outputFiles = [outputFile]
        self.logFile = logFile
        self.cmd = ["xfmconcat", "-clobber"]
        self.cmd += inputFiles
        self.cmd += [outputFile]
        self.name = "xfm-concat"
        self.colour = "yellow"
Exemple #10
0
def voxelVote(inputFH, pairwise, mask):
    # if we do pairwise crossing, use output labels for voting (Default)
    # otherwise, return inputLabels from initial atlas-input crossing
    useInputLabels = False
    if not pairwise:
        useInputLabels = True
    labels = inputFH.returnLabels(useInputLabels)
    out = fh.createBaseName(inputFH.labelsDir, inputFH.basename)
    if mask:
        out += "_mask.mnc"
    else:
        out += "_votedlabels.mnc"
    logFile = fh.logFromFile(inputFH.logDir, out)
    cmd = ["voxel_vote"] + [InputFile(l) for l in labels] + [OutputFile(out)]
    voxel = CmdStage(cmd)
    voxel.setLogFile(LogFile(logFile))
    return (voxel)
Exemple #11
0
def voxelVote(inputFH, pairwise, mask):
    # if we do pairwise crossing, use output labels for voting (Default)
    # otherwise, return inputLabels from initial atlas-input crossing
    useInputLabels = False
    if not pairwise:
        useInputLabels = True
    labels = inputFH.returnLabels(useInputLabels)
    out = fh.createBaseName(inputFH.labelsDir, inputFH.basename)
    if mask:
        out += "_mask.mnc"
    else: 
        out += "_votedlabels.mnc"
    logFile = fh.logFromFile(inputFH.logDir, out)
    cmd = ["voxel_vote.py"] + [InputFile(l) for l in labels] + [OutputFile(out)]
    voxel = CmdStage(cmd)
    voxel.setLogFile(LogFile(logFile))
    return(voxel)
Exemple #12
0
 def __init__(self, 
              inputFiles,
              outputFile,
              logFile=None):
     CmdStage.__init__(self, None)
     
     # in case there is a single input file... (it's actually possible)
     if(not(type(inputFiles) is list)):
         inputFiles = [inputFiles]
     
     self.inputFiles = inputFiles
     self.outputFiles = [outputFile]
     self.logFile = logFile
     self.cmd = ["xfmconcat", "-clobber"]
     self.cmd += inputFiles
     self.cmd += [outputFile]
     self.name   = "xfm-concat"
     self.colour = "yellow"
Exemple #13
0
 def __init__(self, inputFH, outputFH, transform, defaultDir="tmp"):
     CmdStage.__init__(self, None)
     try:  
         if isFileHandler(inputFH, outputFH):
             self.inFile = inputFH.getLastBasevol()  
             self.xfm = transform
             self.outfile = createOutputFileName(outputFH, self.xfm, defaultDir, "_displacement.mnc")
             self.logFile = fh.logFromFile(outputFH.logDir, self.outfile)
         else:
             print ("minc_displacement only works using file handlers. "
                    "Exception being raised.")
             raise
 
     except:
         print("Failed in putting together minc_displacement command")
         print("Unexpected error: ", sys.exc_info())
         
     self.addDefaults()
     self.finalizeCommand()
     self.setName()
Exemple #14
0
 def __init__(self, inputFH, outputFH, transform, defaultDir="tmp"):
     CmdStage.__init__(self, None)
     try:  
         if isFileHandler(inputFH, outputFH):
             self.inFile = inputFH.getLastBasevol()  
             self.xfm = transform
             self.outfile = createOutputFileName(outputFH, self.xfm, defaultDir, "_displacement.mnc")
             self.logFile = fh.logFromFile(outputFH.logDir, self.outfile)
         else:
             print ("minc_displacement only works using file handlers. "
                    "Exception being raised.")
             raise
 
     except:
         print "Failed in putting together minc_displacement command"
         print "Unexpected error: ", sys.exc_info()
         
     self.addDefaults()
     self.finalizeCommand()
     self.setName()
Exemple #15
0
 def __init__(self, inputFH, targetFH, defaultDir="transforms"):
     CmdStage.__init__(self, None)
     
     try:  
         if isFileHandler(inputFH, targetFH):
             self.inFile = inputFH.getLastBasevol()  
             self.mask = inputFH.getMask() 
             self.xfm = inputFH.getLastXfm(targetFH)     
             self.outfile = self.setOutputFile(inputFH, defaultDir)
             self.logFile = fh.logFromFile(inputFH.logDir, self.outfile)
         else:
             print ("linear part of nlin currently only works using file handlers. "
                    "Exception being raised.")
             raise
 
     except:
         print "Failed in putting together linearPartofNlin command"
         print "Unexpected error: ", sys.exc_info()
         
     self.addDefaults()
     self.finalizeCommand()
     self.setName()
Exemple #16
0
 def __init__(self, inputFH, targetFH, defaultDir="transforms"):
     CmdStage.__init__(self, None)
     
     try:  
         if isFileHandler(inputFH, targetFH):
             self.inFile = inputFH.getLastBasevol()  
             self.mask = inputFH.getMask() 
             self.xfm = inputFH.getLastXfm(targetFH)     
             self.outfile = self.setOutputFile(inputFH, defaultDir)
             self.logFile = fh.logFromFile(inputFH.logDir, self.outfile)
         else:
             print ("linear part of nlin currently only works using file handlers. "
                    "Exception being raised.")
             raise
 
     except:
         print("Failed in putting together linearPartofNlin command")
         print("Unexpected error: ", sys.exc_info())
         
     self.addDefaults()
     self.finalizeCommand()
     self.setName()
Exemple #17
0
    def __init__(self, xfm, FH=None, logFile=None):
        CmdStage.__init__(self, None)

        try:
            self.xfm = xfm
            if isFileHandler(FH):
                invXfmBase = fh.removeBaseAndExtension(
                    self.xfm).split(".xfm")[0]
                self.output = fh.createBaseName(FH.transformsDir,
                                                invXfmBase + "_inverted.xfm")
                self.logFile = fh.logFromFile(FH.logDir, self.output)
            else:
                invXfmBase = splitext(self.xfm)[0]
                self.output = invXfmBase + "_inverted.xfm"
                if logFile:
                    self.logFile = logFile

        except:
            print "Failed in putting together xfminvert command"
            print "Unexpected error: ", sys.exc_info()

        self.finalizeCommand()
        self.setName()
Exemple #18
0
 def __init__(self, 
              resolution, 
              inFile,
              output=None,
              logFile=None,
              defaultDir="resampled"):
     
     """Resamples the input file to the resolution specified
        using autocrop. The -resample flag forces the use of
        mincresample.
        
        Resolutions should be specified in mm. 
        e.g. 56 microns should be specified as 0.056    
     """
        
     CmdStage.__init__(self, None)
     self.resolution = str(resolution)
     try:  
         if isFileHandler(inFile):
             self.inFile = inFile.getLastBasevol()               
             self.outfile = self.setOutputFile(inFile, defaultDir)
             self.logFile = fh.logFromFile(inFile.logDir, self.outfile)
         else:
             self.inFile = inFile
             self.outfile = output
             if not logFile:
                 self.logFile = fh.logFromFile(abspath(curdir), output)
             else:
                 self.logFile = logFile
 
     except:
         print "Failed in putting together autocrop command"
         print "Unexpected error: ", sys.exc_info()
         
     self.addDefaults()
     self.finalizeCommand()
     self.setName()
Exemple #19
0
    def __init__(self,
                 resolution,
                 inFile,
                 output=None,
                 logFile=None,
                 defaultDir="resampled"):
        """Resamples the input file to the resolution specified
           using autocrop. The -resample flag forces the use of
           mincresample.
           
           Resolutions should be specified in mm. 
           e.g. 56 microns should be specified as 0.056    
        """

        CmdStage.__init__(self, None)
        self.resolution = str(resolution)
        try:
            if isFileHandler(inFile):
                self.inFile = inFile.getLastBasevol()
                self.outfile = self.setOutputFile(inFile, defaultDir)
                self.logFile = fh.logFromFile(inFile.logDir, self.outfile)
            else:
                self.inFile = inFile
                self.outfile = output
                if not logFile:
                    self.logFile = fh.logFromFile(abspath(curdir), output)
                else:
                    self.logFile = logFile

        except:
            print "Failed in putting together autocrop command"
            print "Unexpected error: ", sys.exc_info()

        self.addDefaults()
        self.finalizeCommand()
        self.setName()
Exemple #20
0
def maskFiles(FH, isAtlas, numAtlases=1):
    """ Assume that if there is more than one atlas, multiple
        masks were generated and we need to perform a voxel_vote. 
        Otherwise, assume we are using inputLabels from crossing with
        only one atlas. 
    """
    #MF TODO: Make this more general to handle pairwise option. 
    p = Pipeline()
    if not isAtlas:
        if numAtlases > 1:
            voxel = voxelVote(FH, False, True)
            p.addStage(voxel)
            mincMathInput = voxel.outputFiles[0]  
        else:
            mincMathInput = FH.returnLabels(True)[0]
        FH.setMask(mincMathInput)
    else:
        mincMathInput = FH.getMask()
    mincMathOutput = fh.createBaseName(FH.resampledDir, FH.basename)
    mincMathOutput += "_masked.mnc"   
    logFile = fh.logFromFile(FH.logDir, mincMathOutput)
    cmd = ["mincmath"] + ["-clobber"] + ["-mult"]
    # In response to issue #135
    # the order of the input files to mincmath matters. By default the
    # first input files is used as a "like file" for the output file. 
    # We should make sure that the mask is not used for that, because
    # it has an image range from 0 to 1; not something we want to be
    # set for the masked output file
    #            average                              mask
    cmd += [InputFile(FH.getLastBasevol())] + [InputFile(mincMathInput)]
    cmd += [OutputFile(mincMathOutput)]
    mincMath = CmdStage(cmd)
    mincMath.setLogFile(LogFile(logFile))
    p.addStage(mincMath)
    FH.setLastBasevol(mincMathOutput)
    return(p)
Exemple #21
0
def voxelVote(inputFH, pairwise, mask):
    # In the main MAGeT.py code, when not only a mask is created for the
    # input files, the process works as follows:
    # 
    # 1) the template files (library) are aligned to each input upto max_templates input files
    # 2) all templates (library + newly created) are aligned to each input
    # 
    # That second stage contains alignments that have already run in the first stage.
    # And pydpiper is coded such, that this duplicated stage is not performed. In order
    # to get all labels for voxel voting, we need to combine atlases from both these 
    # stages, i.e., the "initial" and the "templates". This means that we should always
    # get the "useInputLabels". (In the special case where there is only 1 input file 
    # and pairwise is set to true, this is particularly important, because of the duplicate
    # stages, only the inputlabels will exists.)
    
    # 1) get the input templates
    # the True parameter will return "inputLabels" from the groupedFiles for inputFH
    labels = inputFH.returnLabels(True)
    
    # 2) if we do pairwise crossing, also get the output labels for voting 
    if pairwise:
        # False will return "labels" from the groupedFiles for inputFH
        outputLabels = inputFH.returnLabels(False)
        # add these labels to the "initial" or input labels:
        labels = labels + outputLabels
    
    out = fh.createBaseName(inputFH.labelsDir, inputFH.basename)
    if mask:
        out += "_mask.mnc"
    else: 
        out += "_votedlabels.mnc"
    logFile = fh.logFromFile(inputFH.logDir, out)
    cmd = ["voxel_vote"] + [InputFile(l) for l in labels] + [OutputFile(out)]
    voxel = CmdStage(cmd)
    voxel.setLogFile(LogFile(logFile))
    return(voxel)
Exemple #22
0
def voxelVote(inputFH, pairwise, mask):
    # In the main MAGeT.py code, when not only a mask is created for the
    # input files, the process works as follows:
    #
    # 1) the template files (library) are aligned to each input upto max_templates input files
    # 2) all templates (library + newly created) are aligned to each input
    #
    # That second stage contains alignments that have already run in the first stage.
    # And pydpiper is coded such, that this duplicated stage is not performed. In order
    # to get all labels for voxel voting, we need to combine atlases from both these
    # stages, i.e., the "initial" and the "templates". This means that we should always
    # get the "useInputLabels". (In the special case where there is only 1 input file
    # and pairwise is set to true, this is particularly important, because of the duplicate
    # stages, only the inputlabels will exists.)

    # 1) get the input templates
    # the True parameter will return "inputLabels" from the groupedFiles for inputFH
    labels = inputFH.returnLabels(True)

    # 2) if we do pairwise crossing, also get the output labels for voting
    if pairwise:
        # False will return "labels" from the groupedFiles for inputFH
        outputLabels = inputFH.returnLabels(False)
        # add these labels to the "initial" or input labels:
        labels = labels + outputLabels

    out = fh.createBaseName(inputFH.labelsDir, inputFH.basename)
    if mask:
        out += "_mask.mnc"
    else:
        out += "_votedlabels.mnc"
    logFile = fh.logFromFile(inputFH.logDir, out)
    cmd = ["voxel_vote"] + [InputFile(l) for l in labels] + [OutputFile(out)]
    voxel = CmdStage(cmd)
    voxel.setLogFile(LogFile(logFile))
    return (voxel)
Exemple #23
0
    def __init__(self,
                 inputArray,
                 outputAvg,
                 output=None,
                 logFile=None,
                 defaultDir="tmp"):
        CmdStage.__init__(self, None)

        try:
            """If output is fileHandler, we assume input array is as well"""
            if isFileHandler(outputAvg):
                self.filesToAvg = []
                for i in range(len(inputArray)):
                    self.filesToAvg.append(inputArray[i].getLastBasevol())
                """If no output file is specified, create default, using file handler
                   otherwise use what is specified."""
                if not output:
                    self.output = self.setOutputFile(outputAvg, defaultDir)
                else:
                    self.output = output
                self.logFile = fh.logFromFile(outputAvg.logDir, self.output)
            else:
                self.filesToAvg = inputArray
                self.output = outputAvg
                if not logFile:
                    self.logFile = fh.logFromFile(abspath(curdir), outputAvg)
                else:
                    self.logFile = logFile

        except:
            print "Failed in putting together mincaverage command"
            print "Unexpected error: ", sys.exc_info()

        self.addDefaults()
        self.finalizeCommand()
        self.setName()
Exemple #24
0
 def __init__(self, 
              xfm,
              FH=None,
              logFile=None):
     CmdStage.__init__(self, None)
     
     try:  
         self.xfm = xfm
         if isFileHandler(FH):
             invXfmBase = fh.removeBaseAndExtension(self.xfm).split(".xfm")[0]
             self.output = fh.createBaseName(FH.transformsDir, invXfmBase + "_inverted.xfm")
             self.logFile = fh.logFromFile(FH.logDir, self.output)
         else:
             invXfmBase = splitext(self.xfm)[0]
             self.output = invXfmBase + "_inverted.xfm"
             if logFile:
                 self.logFile = logFile
 
     except:
         print "Failed in putting together xfminvert command"
         print "Unexpected error: ", sys.exc_info()
                                            
     self.finalizeCommand()
     self.setName()
Exemple #25
0
 def __init__(self, 
              inputArray, 
              outputAvg,
              output=None, 
              logFile=None, 
              defaultDir="tmp"):
     CmdStage.__init__(self, None)
     
     try:  
         """If output is fileHandler, we assume input array is as well"""
         if isFileHandler(outputAvg):
             self.filesToAvg = []
             for i in range(len(inputArray)):
                 self.filesToAvg.append(inputArray[i].getLastBasevol()) 
             """If no output file is specified, create default, using file handler
                otherwise use what is specified."""              
             if not output:
                 self.output = self.setOutputFile(outputAvg, defaultDir)
             else:
                 self.output = output
             self.logFile = fh.logFromFile(outputAvg.logDir, self.output)
         else:
             self.filesToAvg = inputArray
             self.output = outputAvg
             if not logFile:
                 self.logFile = fh.logFromFile(abspath(curdir), outputAvg)
             else:
                 self.logFile = logFile
 
     except:
         print "Failed in putting together mincaverage command"
         print "Unexpected error: ", sys.exc_info()
         
     self.addDefaults()
     self.finalizeCommand()
     self.setName()
Exemple #26
0
def maskFiles(FH, isAtlas, numAtlases=1):
    """ Assume that if there is more than one atlas, multiple
        masks were generated and we need to perform a voxel_vote. 
        Otherwise, assume we are using inputLabels from crossing with
        only one atlas. 
    """
    #MF TODO: Make this more general to handle pairwise option.
    p = Pipeline()
    if not isAtlas:
        if numAtlases > 1:
            voxel = voxelVote(FH, False, True)
            p.addStage(voxel)
            mincMathInput = voxel.outputFiles[0]
        else:
            mincMathInput = FH.returnLabels(True)[0]
        FH.setMask(mincMathInput)
    else:
        mincMathInput = FH.getMask()
    mincMathOutput = fh.createBaseName(FH.resampledDir, FH.basename)
    mincMathOutput += "_masked.mnc"
    logFile = fh.logFromFile(FH.logDir, mincMathOutput)
    cmd = ["mincmath"] + ["-clobber"] + ["-mult"]
    # In response to issue #135
    # the order of the input files to mincmath matters. By default the
    # first input files is used as a "like file" for the output file.
    # We should make sure that the mask is not used for that, because
    # it has an image range from 0 to 1; not something we want to be
    # set for the masked output file
    #            average                              mask
    cmd += [InputFile(FH.getLastBasevol())] + [InputFile(mincMathInput)]
    cmd += [OutputFile(mincMathOutput)]
    mincMath = CmdStage(cmd)
    mincMath.setLogFile(LogFile(logFile))
    p.addStage(mincMath)
    FH.setLastBasevol(mincMathOutput)
    return (p)
Exemple #27
0
    def __init__(
            self,
            inSource,
            inTarget,
            output=None,
            logFile=None,
            defaultDir="transforms",
            blur=[-1, 0.056],
            gradient=[False, True],
            target_mask=None,  #ANTS only uses one mask
            similarity_metric=["CC", "CC"],
            weight=[1, 1],
            iterations="100x100x100x150",
            radius_or_histo=[3, 3],
            transformation_model="SyN[0.1]",
            regularization="Gauss[2,1]",
            useMask=True):
        CmdStage.__init__(self,
                          None)  #don't do any arg processing in superclass
        try:
            if isFileHandler(inSource, inTarget):
                """Same defaults as minctracc class:
                    blur = None --> return lastblur
                    gradient = True --> return gradient instead of blur
                    if blur = -1 --> lastBaseVol returned and gradient ignored"""
                self.source = []
                self.target = []
                # Need to check that length of blur, gradient, similarity, weight
                # and radius_or_histo are the same
                self.checkArrayLengths(blur, gradient, similarity_metric,
                                       weight, radius_or_histo)
                for i in range(len(blur)):
                    self.source.append(inSource.getBlur(blur[i], gradient[i]))
                    self.target.append(inTarget.getBlur(blur[i], gradient[i]))
                """If no output transform is specified, use registerVolume to create a default.
                   If an output transform name is specified, use this as the output, and add it as the last xfm between source and target. 
                   Note: The output file passed in must be a full path."""
                if not output:
                    outputXfm = inSource.registerVolume(inTarget, defaultDir)
                    self.output = outputXfm
                else:
                    self.output = output
                    inSource.addAndSetXfmToUse(inTarget, self.output)
                self.logFile = fh.logFromFile(inSource.logDir, self.output)
                self.useMask = useMask
                if self.useMask:
                    self.target_mask = inTarget.getMask()
            else:
                self.source = inSource
                self.target = inTarget
                #MF TODO: Need to find a way to specify multiple source and targets
                #based on blur and gradient
                self.output = output
                if not logFile:
                    self.logFile = fh.logFromFile(abspath(curdir), output)
                else:
                    self.logFile = logFile
                self.useMask = useMask
                if self.useMask:
                    self.target_mask = target_mask
        except:
            print "Failed in putting together mincANTS command."
            print "Unexpected error: ", sys.exc_info()

        self.similarity_metric = similarity_metric
        self.weight = weight
        self.iterations = iterations
        self.radius_or_histo = radius_or_histo
        """Single quotes needed on the command line for 
           transformation_model and regularization
        """
        self.transformation_model = "'" + transformation_model + "'"
        self.regularization = "'" + regularization + "'"

        self.addDefaults()
        self.finalizeCommand()
        self.setName()
        self.colour = "red"
Exemple #28
0
 def calcDetAndLogDet(self, useFullDisp=False):  
     if useFullDisp:
         dispToUse = self.fullDisp #absolute jacobians
     else:
         dispToUse = self.nlinDisp #relative jacobians
     """Insert -1 at beginning of blurs array to include the calculation of unblurred jacobians."""
     self.blurs.insert(0,-1)    
     for b in self.blurs:
         """Create base name for determinant calculation."""
         outputBase = fh.removeBaseAndExtension(dispToUse).split("_displacement")[0]
         """Calculate smoothed deformation field for all blurs other than -1"""
         if b != -1:
             fwhm = "--fwhm=" + str(b)
             outSmooth = fh.createBaseName(self.inputFH.tmpDir, 
                                    outputBase + "_smooth_displacement_fwhm" + str(b) + ".mnc")
             cmd = ["smooth_vector", "--clobber", "--filter", fwhm, 
                    InputFile(dispToUse), OutputFile(outSmooth)]
             smoothVec = CmdStage(cmd)
             smoothVec.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outSmooth)))
             self.p.addStage(smoothVec)
             """Set input for determinant calculation."""
             inputDet = outSmooth
             nameAddendum = "_fwhm" + str(b)
         else:
             inputDet = dispToUse
             nameAddendum = ""
         outputDet = fh.createBaseName(self.inputFH.tmpDir, 
                                       outputBase + "_determinant" + nameAddendum + ".mnc")
         outDetShift = fh.createBaseName(self.inputFH.tmpDir, 
                                       outputBase + "_det_plus1" + nameAddendum + ".mnc")
         
         if useFullDisp: 
             #absolute jacobians
             outLogDet = fh.createBaseName(self.inputFH.statsDir, 
                                       outputBase + "_absolute_log_determinant" + nameAddendum + ".mnc")
         else:
             #relative jacobians
             outLogDet = fh.createBaseName(self.inputFH.statsDir, 
                                       outputBase + "_relative_log_determinant" + nameAddendum + ".mnc")
         
         """Calculate the determinant, then add 1 (per mincblob weirdness)"""
         
         cmd = ["mincblob", "-clobber", "-determinant", InputFile(inputDet), OutputFile(outputDet)]
         det = CmdStage(cmd)
         det.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outputDet)))
         self.p.addStage(det)
         
         cmd = ["mincmath", "-clobber", "-2", "-const", str(1), "-add", 
                InputFile(outputDet), OutputFile(outDetShift)]
         det = CmdStage(cmd)
         det.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outDetShift)))
         self.p.addStage(det)
         
         """Calculate log determinant (jacobian) and add to statsGroup."""
         cmd = ["mincmath", "-clobber", "-2", "-log", InputFile(outDetShift), OutputFile(outLogDet)]
         det = CmdStage(cmd)
         det.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outLogDet)))
         self.p.addStage(det)
         if useFullDisp:
             self.statsGroup.absoluteJacobians[b] = outLogDet
         else:
             self.statsGroup.relativeJacobians[b] = outLogDet
Exemple #29
0
 def calcDetAndLogDet(self, useFullDisp=False):  
     #Lots of repetition here--let's see if we can't make some functions.
     """useFullDisp indicates whether or not to use full displacement field or non-linear component only""" 
     if useFullDisp:
         dispToUse = self.fullDisp
     else:
         dispToUse = self.nlinDisp
     """Insert -1 at beginning of blurs array to include the calculation of unblurred jacobians."""
     self.blurs.insert(0,-1)    
     for b in self.blurs:
         """Calculate default output filenames and set input for determinant calculation."""
         outputBase = fh.removeBaseAndExtension(dispToUse).split("_displacement")[0]
         inputDet = dispToUse
         outputDet = fh.createBaseName(self.inputFH.tmpDir, outputBase + "_determinant.mnc")
         outDetShift = fh.createBaseName(self.inputFH.tmpDir, outputBase + "_det_plus1.mnc")
         outLogDet = fh.createBaseName(self.inputFH.statsDir, outputBase + "_log_determinant.mnc")
         outLogDetScaled = fh.createBaseName(self.inputFH.statsDir, outputBase + "_log_determinant_scaled.mnc")
         """Calculate smoothed deformation field for all blurs other than -1"""
         if b != -1:
             fwhm = "--fwhm=" + str(b)
             outSmooth = fh.createBaseName(self.inputFH.tmpDir, 
                                    outputBase + "_smooth_displacement_fwhm" + str(b) + ".mnc")
             cmd = ["smooth_vector", "--clobber", "--filter", fwhm, 
                    InputFile(dispToUse), OutputFile(outSmooth)]
             smoothVec = CmdStage(cmd)
             smoothVec.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outSmooth)))
             self.p.addStage(smoothVec)
             """Override file name defaults for each blur and set input for determinant calculation."""
             inputDet = outSmooth
             outputDet = fh.createBaseName(self.inputFH.tmpDir, 
                                       outputBase + "_determinant_fwhm" + str(b) + ".mnc")
             outDetShift = fh.createBaseName(self.inputFH.tmpDir, 
                                       outputBase + "_det_plus1_fwhm" + str(b) + ".mnc")
             outLogDet = fh.createBaseName(self.inputFH.statsDir, 
                                       outputBase + "_log_determinant_fwhm" + str(b) + ".mnc")
             outLogDetScaled = fh.createBaseName(self.inputFH.statsDir, 
                                                 outputBase + "_log_determinant_scaled_fwhm" + str(b) + ".mnc")
         
         """Calculate the determinant, then add 1 (per mincblob weirdness)"""
         
         cmd = ["mincblob", "-clobber", "-determinant", InputFile(inputDet), OutputFile(outputDet)]
         det = CmdStage(cmd)
         det.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outputDet)))
         self.p.addStage(det)
         
         cmd = ["mincmath", "-clobber", "-2", "-const", str(1), "-add", 
                InputFile(outputDet), OutputFile(outDetShift)]
         det = CmdStage(cmd)
         det.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outDetShift)))
         self.p.addStage(det)
         
         """Calculate log determinant (jacobian) and add to statsGroup."""
         cmd = ["mincmath", "-clobber", "-2", "-log", InputFile(outDetShift), OutputFile(outLogDet)]
         det = CmdStage(cmd)
         det.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outLogDet)))
         self.p.addStage(det)
         self.statsGroup.jacobians[b] = outLogDet
         
         """If self.linearXfm present, calculate scaled log determinant (scaled jacobian) and add to statsGroup"""
         if not useFullDisp:
             """
                 If self.scaleFactor is specified, then concatenate this additional transform
                 with self.linearXfm. Typically, this will come from an LSQ12 registration, but
                 may come from another alignment. 
             """
             if self.scalingFactor:
                 toConcat = [self.scalingFactor, self.linearXfm]
                 self.fullLinearXfm = fh.createBaseName(self.inputFH.transformsDir, self.inputFH.basename + "_full_linear.xfm")
                 logFile=fh.logFromFile(self.inputFH.logDir, fh.removeBaseAndExtension(self.fullLinearXfm))
                 concat = xfmConcat(toConcat, self.fullLinearXfm, logFile=logFile)
                 self.p.addStage(concat)
             else:
                 self.fullLinearXfm = self.linearXfm
             cmd = ["scale_voxels", "-clobber", "-invert", "-log", 
                    InputFile(self.fullLinearXfm), InputFile(outLogDet), OutputFile(outLogDetScaled)]
             det = CmdStage(cmd)
             det.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outLogDetScaled)))
             self.p.addStage(det)
             self.statsGroup.scaledJacobians[b] = outLogDetScaled
         else:
             self.statsGroup.scaledJacobians = None
Exemple #30
0
    def __init__(self, inFile, fwhm, defaultDir="tmp", gradient=False):
        """calls mincblur with the specified 3D Gaussian kernel

        The inputs can be in one of two styles. The first argument can
        be an instance of RegistrationPipeFH, in which case the last
        volume in that instance (i.e. inFile.lastBasevol) will be
        blurred and the output will be determined by its blurFile
        method. Alternately, the inFile can be a string representing a
        filename, in which case the output and logfile will be set based on 
        the inFile name. If the fwhm specified is -1, we do not construct 
        a command.

        """

        if fwhm == -1:
            return

        CmdStage.__init__(self, None)
        try:
            if isFileHandler(inFile):
                blurlist = inFile.blurFile(fwhm, gradient, defaultDir)
                self.base = blurlist["base"]
                self.inputFiles = [inFile.getLastBasevol()]
                self.outputFiles = [blurlist["file"]]
                self.logFile = blurlist["log"]
                self.name = "mincblur " + str(fwhm) + " " + inFile.basename
                if gradient:
                    self.outputFiles.append(blurlist["gradient"])
            else:
                self.base = str(inFile).replace(".mnc", "")
                self.inputFiles = [inFile]
                blurBase = "".join([self.base, "_fwhm", str(fwhm), "_blur"])
                output = "".join([blurBase, ".mnc"])
                self.outputFiles = [output]
                self.logFile = fh.logFromFile(abspath(curdir), output)
                self.name = "mincblur " + str(fwhm) + " " + basename(inFile)
                if gradient:
                    gradientBase = blurBase.replace("blur", "dxyz")
                    self.outputFiles += ["".join([gradientBase, ".mnc"])]
        except:
            print "Failed in putting together blur command; unexpected error: "
            raise

        self.cmd = [
            "mincblur", "-clobber", "-no_apodize", "-fwhm",
            str(fwhm), self.inputFiles[0], self.base
        ]
        if gradient:
            self.cmd += ["-gradient"]
        self.colour = "blue"

        # this is a temporary solution, but it's better to at least catch it
        # somewhere... In the mincblur code, there is a hardcoded limit for
        # the length of the output file: full_outfilename[256]; (blur_volume.c)
        # This is a limit for the basename. Added to that will be: _dxyz.mnc
        # or _blur.mnc. In total the output file names can not be longer than 264
        # characters. Given that we don't know which version of mincblur is installed
        # (this should and will be fixed at some point in the future), we'll exit here
        if len(self.outputFiles[0]) > 264:
            raise Exception(
                "mincblur (potentially) has a hardcoded limit for the allowed length of the output file. The following command will not be able to run: \n\n%s\n\nPlease rename your input files/paths to make sure the filenames become shorter.\n"
                % self.cmd)
Exemple #31
0
    def __init__(self, 
                 inSource,
                 inTarget,
                 output=None,
                 logFile=None,
                 defaultDir="transforms", 
                 blur=None,
                 gradient=False,
                 linearparam="nlin",
                 source_mask=None, 
                 target_mask=None,
                 iterations=40,
                 step=0.5,
                 transform=None,
                 weight=0.8,
                 stiffness=0.98,
                 similarity=0.8,
                 w_translations=0.4,
                 w_rotations=0.0174533,
                 w_scales=0.02,
                 w_shear=0.02,
                 simplex=1,
                 optimization="-use_simplex",
                 useMask=True):
        #MF TODO: Specify different w_translations, rotations, scales shear in each direction?
        # Now assumes same in all directions
        # Go to more general **kwargs?
        
        """an efficient way to add a minctracc call to a pipeline

        The constructor needs two inputFile arguments, the source and the
        target for the registration, and multiple optional arguments
        for specifying parameters. The source and the target can be
        specified as either RegistrationPipeFH instances or as strings
        representing filenames. In the latter case an output and a
        logfile filename are required as well (these are filled in
        automatically in the case of RegistrationPipeFH instances.)

        """
        CmdStage.__init__(self, None) #don't do any arg processing in superclass
        try: 
            if isFileHandler(inSource, inTarget):
                """ if blur = None, getBlur returns lastblur
                if gradient is true, getBlur returns gradient instead of blur 
                if blur = -1, lastBaseVol is returned and gradient is ignored.
                
                self.transform will be None if there is no previous transform
                between input and target. If this is the case, lsq6 and lsq12
                defaults are added in the setTransforms function
                """
                self.source = inSource.getBlur(blur, gradient)
                self.target = inTarget.getBlur(blur, gradient)
                self.transform = inSource.getLastXfm(inTarget)
                """If no output transform is specified, use registerVolume to create a default.
                   If an output transform name is specified, use this as the output, and add it as the last xfm between source and target. 
                   Note: The output file passed in must be a full path."""
                if not output:
                    outputXfm = inSource.registerVolume(inTarget, defaultDir)
                    self.output = outputXfm
                else:
                    self.output = output
                    inSource.addAndSetXfmToUse(inTarget, self.output)
                    outputXfm = output
                self.logFile = fh.logFromFile(inSource.logDir, outputXfm)
                self.useMask = useMask
                if self.useMask:
                    self.source_mask = inSource.getMask()
                    self.target_mask = inTarget.getMask()
            else:
                self.source = inSource
                self.target = inTarget
                self.output = output
                if not logFile:
                    self.logFile = fh.logFromFile(abspath(curdir), output)
                else:
                    self.logFile = logFile
                self.transform = transform
                self.useMask = useMask
                if self.useMask:
                    self.source_mask = source_mask
                    self.target_mask = target_mask 
        except:
            print "Failed in putting together minctracc command."
            print "Unexpected error: ", sys.exc_info()
        
        self.linearparam = linearparam       
        self.iterations = str(iterations)
        self.lattice_diameter = str(step*3.0)
        self.step = str(step)       
        self.weight = str(weight)
        self.stiffness = str(stiffness)
        self.similarity = str(similarity)
        self.w_translations = str(w_translations)
        self.w_rotations = str(w_rotations)
        self.w_scales = str(w_scales)
        self.w_shear = str(w_shear)
        self.simplex = str(simplex)
        self.optimization = str(optimization)

        self.addDefaults()
        self.finalizeCommand()
        self.setTransform()
        self.setName()
        self.colour = "red"
Exemple #32
0
    def __init__(self,              
                 inFile,
                 targetFile,
                 **kwargs):
        
        """calls mincresample with the specified options

        The inFile and likeFile can be in one of two styles. 
        The first argument can be an instance of RegistrationPipeFH. 
        In this case the last volume in that instance (i.e. inFile.lastBasevol) 
        will be resampled and the output will be determined accordingly.
        Alternatively, the inFile can be a string representing a
        filename, in which case the output and logfile will be set based on 
        the inFile name.

        inFile is required, everything else optional
        This class assuming use of the most commonly used flags (-2, -clobber, -like, -transform)
        Any commands above and beyond the standard will be read in from argarray
        argarray could contain inFile and/or output files
        """
        
        argArray = kwargs.pop("argArray", None)
        if not argArray:
            CmdStage.__init__(self, ["mincresample"])
        else:
            CmdStage.__init__(self, ["mincresample"] + argArray)
          
        try:
            #MF TODO: What if we don't want to use lastBasevol?  
            if isFileHandler(inFile, targetFile):              
                self.inFile = self.getFileToResample(inFile, **kwargs)
                self.targetFile = targetFile.getLastBasevol()
                likeFile=kwargs.pop("likeFile", None)
                if likeFile:
                    if isFileHandler(likeFile):
                        self.likeFile = likeFile.getLastBasevol() 
                    else:
                        print "likeFile must be RegistrationPipeFH or RegistrationFHBase."
                        raise 
                invert = False
                for cmd in self.cmd:
                    if fnmatch.fnmatch(cmd, "*-invert*"):
                        invert = True
                        break
                xfm = kwargs.pop("transform", None)
                if xfm:
                    self.cxfm = xfm
                else:
                    if invert:
                        self.cxfm = targetFile.getLastXfm(inFile)
                    else:
                        self.cxfm = inFile.getLastXfm(targetFile)
                self.outputLocation=kwargs.pop("outputLocation", None)
                if not self.outputLocation: 
                    self.outputLocation=inFile
                else:
                    if not isFileHandler(self.outputLocation):
                        print "outputLocation must be RegistrationPipeFH or RegistrationFHBase."
                        raise
                default = kwargs.pop("defaultDir", None)
                if not default:
                    defaultDir = "resampled"
                else:
                    defaultDir = default
                """If an output file is specified, then use it, else create a default file name.
                   Note: The output file passed in must be a full path."""
                output = kwargs.pop("output", None)
                if not output:
                    self.outfile = self.setOutputFile(self.outputLocation, defaultDir)
                else:
                    self.outfile = output
                self.logFile = fh.logFromFile(self.outputLocation.logDir, self.outfile)
            else:
                self.inFile = inFile
                self.targetFile = targetFile
                self.likeFile = kwargs.pop("likeFile", None)
                self.cxfm = kwargs.pop("transform", None)
                self.outfile=kwargs.pop("output", None)
                logFile=kwargs.pop("logFile", None)
                if not logFile:
                    self.logFile = fh.logFromFile(abspath(curdir), self.outfile)
                else:
                    self.logFile = logFile
    
        except:
            print "Failed in putting together resample command"
            print "Unexpected error: ", sys.exc_info()
            
        self.addDefaults()
        self.finalizeCommand()
        self.setName()
        if isFileHandler(inFile, targetFile):
            self.setLastResampledFile()
Exemple #33
0
 def calcDetAndLogDet(self, useFullDisp=False):  
     if useFullDisp:
         dispToUse = self.fullDisp #absolute jacobians
     else:
         dispToUse = self.nlinDisp #relative jacobians
     """Insert -1 at beginning of blurs array to include the calculation of unblurred jacobians."""
     self.blurs.insert(0,-1)    
     for b in self.blurs:
         """Create base name for determinant calculation."""
         outputBase = fh.removeBaseAndExtension(dispToUse).split("_displacement")[0]
         """Calculate smoothed deformation field for all blurs other than -1"""
         if b != -1:
             fwhm = "--fwhm=" + str(b)
             outSmooth = fh.createBaseName(self.inputFH.tmpDir, 
                                    outputBase + "_smooth_displacement_fwhm" + str(b) + ".mnc")
             cmd = ["smooth_vector", "--clobber", "--filter", fwhm, 
                    InputFile(dispToUse), OutputFile(outSmooth)]
             smoothVec = CmdStage(cmd)
             smoothVec.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outSmooth)))
             self.p.addStage(smoothVec)
             """Set input for determinant calculation."""
             inputDet = outSmooth
             nameAddendum = "_fwhm" + str(b)
         else:
             inputDet = dispToUse
             nameAddendum = ""
         outputDet = fh.createBaseName(self.inputFH.tmpDir, 
                                       outputBase + "_determinant" + nameAddendum + ".mnc")
         outDetShift = fh.createBaseName(self.inputFH.tmpDir, 
                                       outputBase + "_det_plus1" + nameAddendum + ".mnc")
         
         if useFullDisp: 
             #absolute jacobians
             outLogDet = fh.createBaseName(self.inputFH.statsDir, 
                                       outputBase + "_absolute_log_determinant" + nameAddendum + ".mnc")
         else:
             #relative jacobians
             outLogDet = fh.createBaseName(self.inputFH.statsDir, 
                                       outputBase + "_relative_log_determinant" + nameAddendum + ".mnc")
         
         """Calculate the determinant, then add 1 (per mincblob weirdness)"""
         
         cmd = ["mincblob", "-clobber", "-determinant", InputFile(inputDet), OutputFile(outputDet)]
         det = CmdStage(cmd)
         det.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outputDet)))
         self.p.addStage(det)
         
         cmd = ["mincmath", "-clobber", "-2", "-const", str(1), "-add", 
                InputFile(outputDet), OutputFile(outDetShift)]
         det = CmdStage(cmd)
         det.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outDetShift)))
         self.p.addStage(det)
         
         """Calculate log determinant (jacobian) and add to statsGroup."""
         cmd = ["mincmath", "-clobber", "-2", "-log", InputFile(outDetShift), OutputFile(outLogDet)]
         det = CmdStage(cmd)
         det.setLogFile(LogFile(fh.logFromFile(self.inputFH.logDir, outLogDet)))
         self.p.addStage(det)
         if useFullDisp:
             self.statsGroup.absoluteJacobians[b] = outLogDet
         else:
             self.statsGroup.relativeJacobians[b] = outLogDet
Exemple #34
0
    def __init__(self,
                 inSource,
                 inTarget,
                 output=None,
                 logFile=None,
                 defaultDir="transforms",
                 blur=None,
                 gradient=False,
                 linearparam="nlin",
                 source_mask=None,
                 target_mask=None,
                 iterations=40,
                 step=0.5,
                 transform=None,
                 weight=0.8,
                 stiffness=0.98,
                 similarity=0.8,
                 w_translations=0.4,
                 w_rotations=0.0174533,
                 w_scales=0.02,
                 w_shear=0.02,
                 simplex=1,
                 optimization="-use_simplex",
                 useMask=True):
        #MF TODO: Specify different w_translations, rotations, scales shear in each direction?
        # Now assumes same in all directions
        # Go to more general **kwargs?
        """an efficient way to add a minctracc call to a pipeline

        The constructor needs two inputFile arguments, the source and the
        target for the registration, and multiple optional arguments
        for specifying parameters. The source and the target can be
        specified as either RegistrationPipeFH instances or as strings
        representing filenames. In the latter case an output and a
        logfile filename are required as well (these are filled in
        automatically in the case of RegistrationPipeFH instances.)

        """
        CmdStage.__init__(self,
                          None)  #don't do any arg processing in superclass
        try:
            if isFileHandler(inSource, inTarget):
                """ if blur = None, getBlur returns lastblur
                if gradient is true, getBlur returns gradient instead of blur 
                if blur = -1, lastBaseVol is returned and gradient is ignored.
                
                self.transform will be None if there is no previous transform
                between input and target. If this is the case, lsq6 and lsq12
                defaults are added in the setTransforms function
                """
                self.source = inSource.getBlur(blur, gradient)
                self.target = inTarget.getBlur(blur, gradient)
                self.transform = inSource.getLastXfm(inTarget)
                """If no output transform is specified, use registerVolume to create a default.
                   If an output transform name is specified, use this as the output, and add it as the last xfm between source and target. 
                   Note: The output file passed in must be a full path."""
                if not output:
                    outputXfm = inSource.registerVolume(inTarget, defaultDir)
                    self.output = outputXfm
                else:
                    self.output = output
                    inSource.addAndSetXfmToUse(inTarget, self.output)
                    outputXfm = output
                self.logFile = fh.logFromFile(inSource.logDir, outputXfm)
                self.useMask = useMask
                if self.useMask:
                    self.source_mask = inSource.getMask()
                    self.target_mask = inTarget.getMask()
            else:
                self.source = inSource
                self.target = inTarget
                self.output = output
                if not logFile:
                    self.logFile = fh.logFromFile(abspath(curdir), output)
                else:
                    self.logFile = logFile
                self.transform = transform
                self.useMask = useMask
                if self.useMask:
                    self.source_mask = source_mask
                    self.target_mask = target_mask
        except:
            print "Failed in putting together minctracc command."
            print "Unexpected error: ", sys.exc_info()

        self.linearparam = linearparam
        self.iterations = str(iterations)
        self.lattice_diameter = str(step * 3.0)
        self.step = str(step)
        self.weight = str(weight)
        self.stiffness = str(stiffness)
        self.similarity = str(similarity)
        self.w_translations = str(w_translations)
        self.w_rotations = str(w_rotations)
        self.w_scales = str(w_scales)
        self.w_shear = str(w_shear)
        self.simplex = str(simplex)
        self.optimization = str(optimization)

        self.addDefaults()
        self.finalizeCommand()
        self.setTransform()
        self.setName()
        self.colour = "red"
Exemple #35
0
    def __init__(self, inFile, targetFile, **kwargs):
        """calls mincresample with the specified options

        The inFile and likeFile can be in one of two styles. 
        The first argument can be an instance of RegistrationPipeFH. 
        In this case the last volume in that instance (i.e. inFile.lastBasevol) 
        will be resampled and the output will be determined accordingly.
        Alternatively, the inFile can be a string representing a
        filename, in which case the output and logfile will be set based on 
        the inFile name.

        inFile is required, everything else optional
        This class assuming use of the most commonly used flags (-2, -clobber, -like, -transform)
        Any commands above and beyond the standard will be read in from argarray
        argarray could contain inFile and/or output files
        """

        argArray = kwargs.pop("argArray", None)
        if not argArray:
            CmdStage.__init__(self, ["mincresample"])
        else:
            CmdStage.__init__(self, ["mincresample"] + argArray)

        try:
            #MF TODO: What if we don't want to use lastBasevol?
            if isFileHandler(inFile, targetFile):
                self.inFile = self.getFileToResample(inFile, **kwargs)
                self.targetFile = targetFile.getLastBasevol()
                likeFile = kwargs.pop("likeFile", None)
                if likeFile:
                    if isFileHandler(likeFile):
                        self.likeFile = likeFile.getLastBasevol()
                    else:
                        print "likeFile must be RegistrationPipeFH or RegistrationFHBase."
                        raise
                invert = False
                for cmd in self.cmd:
                    if fnmatch.fnmatch(cmd, "*-invert*"):
                        invert = True
                        break
                xfm = kwargs.pop("transform", None)
                if xfm:
                    self.cxfm = xfm
                else:
                    if invert:
                        self.cxfm = targetFile.getLastXfm(inFile)
                    else:
                        self.cxfm = inFile.getLastXfm(targetFile)
                self.outputLocation = kwargs.pop("outputLocation", None)
                if not self.outputLocation:
                    self.outputLocation = inFile
                else:
                    if not isFileHandler(self.outputLocation):
                        print "outputLocation must be RegistrationPipeFH or RegistrationFHBase."
                        raise
                default = kwargs.pop("defaultDir", None)
                if not default:
                    defaultDir = "resampled"
                else:
                    defaultDir = default
                """If an output file is specified, then use it, else create a default file name.
                   Note: The output file passed in must be a full path."""
                output = kwargs.pop("output", None)
                if not output:
                    self.outfile = self.setOutputFile(self.outputLocation,
                                                      defaultDir)
                else:
                    self.outfile = output
                self.logFile = fh.logFromFile(self.outputLocation.logDir,
                                              self.outfile)
            else:
                self.inFile = inFile
                self.targetFile = targetFile
                self.likeFile = kwargs.pop("likeFile", None)
                self.cxfm = kwargs.pop("transform", None)
                self.outfile = kwargs.pop("output", None)
                logFile = kwargs.pop("logFile", None)
                if not logFile:
                    self.logFile = fh.logFromFile(abspath(curdir),
                                                  self.outfile)
                else:
                    self.logFile = logFile

        except:
            print "Failed in putting together resample command"
            print "Unexpected error: ", sys.exc_info()

        self.addDefaults()
        self.finalizeCommand()
        self.setName()
        if isFileHandler(inFile, targetFile):
            self.setLastResampledFile()
Exemple #36
0
 def iterate(self):
     xfmsToAvg = {}
     lsq12ResampledFiles = {}
     for inputFH in self.inputs:
         """Create an array of xfms, to compute an average lsq12 xfm for each input"""
         xfmsToAvg[inputFH] = []
         if self.maxPairs is not None:
             if self.maxPairs >= len(self.inputs) - 1:
                 # -1 prevents unnecessary sampling in the case self.maxPairs = len(self.inputs) - 1
                 inputs = self.inputs
             else:
                 random.seed(
                     tuple(map(lambda fh: fh.inputFileName, self.inputs)))
                 # if inputFH is included in the sample, we will register against one fewer target
                 inputs = random.sample(
                     filter(lambda fh: fh != inputFH, self.inputs),
                     self.maxPairs)
         else:
             inputs = self.inputs
         for targetFH in inputs:
             if inputFH != targetFH:
                 lsq12 = LSQ12(inputFH,
                               targetFH,
                               blurs=self.blurs,
                               step=self.stepSize,
                               gradient=self.useGradient,
                               simplex=self.simplex,
                               w_translations=self.w_translations)
                 self.p.addPipeline(lsq12.p)
                 xfmsToAvg[inputFH].append(inputFH.getLastXfm(targetFH))
         """Create average xfm for inputFH using xfmsToAvg array"""
         avgXfmOutput = createBaseName(inputFH.transformsDir,
                                       inputFH.basename + "-avg-lsq12.xfm")
         cmd = ["xfmavg", "-verbose", "-clobber"] \
               + map(InputFile, xfmsToAvg[inputFH]) + [OutputFile(avgXfmOutput)]
         #for i in range(len(xfmsToAvg[inputFH])):
         #    cmd.append(InputFile(xfmsToAvg[inputFH][i]))
         # '-clobber' works around #157, but is probably better in general
         #cmd.append(OutputFile(avgXfmOutput))
         xfmavg = CmdStage(cmd)
         xfmavg.setLogFile(
             LogFile(logFromFile(inputFH.logDir, avgXfmOutput)))
         self.p.addStage(xfmavg)
         self.lsq12AvgXfms[inputFH] = avgXfmOutput
         """ resample brain and add to array for mincAveraging"""
         if not self.likeFile:
             likeFile = inputFH
         else:
             likeFile = self.likeFile
         rslOutput = createBaseName(
             inputFH.resampledDir,
             inputFH.basename + "-resampled-lsq12.mnc")
         res = ma.mincresample(inputFH,
                               inputFH,
                               transform=avgXfmOutput,
                               likeFile=likeFile,
                               output=rslOutput,
                               argArray=["-sinc"])
         self.p.addStage(res)
         lsq12ResampledFiles[inputFH] = rslOutput
     """ After all registrations complete, setLastBasevol for each subject to be
         resampled file in lsq12 space. We can then call mincAverage on fileHandlers,
         as it will use the lastBasevol for each by default."""
     for inputFH in self.inputs:
         inputFH.setLastBasevol(lsq12ResampledFiles[inputFH])
     """ mincAverage all resampled brains and put in lsq12Directory"""
     self.lsq12Avg = abspath(self.lsq12Dir) + "/" + basename(
         self.lsq12Dir) + "-pairs.mnc"
     self.lsq12AvgFH = RegistrationPipeFH(self.lsq12Avg,
                                          basedir=self.lsq12Dir)
     avg = ma.mincAverage(inputs,
                          self.lsq12AvgFH,
                          output=self.lsq12Avg,
                          defaultDir=self.lsq12Dir)
     self.p.addStage(avg)
Exemple #37
0
    def __init__(self, 
                 inputFiles, 
                 createMontage=True,
                 montageOutPut=None,
                 scalingFactor=20,
                 message="lsq6"):
        self.p = Pipeline()
        self.individualImages = []
        self.individualImagesLabeled = [] 
        self.message = message

        if createMontage and montageOutPut == None:
            print("\nError: createMontage is specified in createQualityControlImages, but no output name for the montage is provided. Exiting...\n")
            sys.exit()

        # for each of the input files, run a mincpik call and create 
        # a triplane image.
        for inFile in inputFiles:
            if isFileHandler(inFile):
                # create command using last base vol
                inputToMincpik = inFile.getLastBasevol()
                outputMincpik = createBaseName(inFile.tmpDir,
                                            removeBaseAndExtension(inputToMincpik) + "_QC_image.png")
                cmd = ["mincpik", "-clobber",
                       "-scale", scalingFactor,
                       "-triplanar",
                       InputFile(inputToMincpik),
                       OutputFile(outputMincpik)]
                mincpik = CmdStage(cmd)
                mincpik.setLogFile(LogFile(logFromFile(inFile.logDir, outputMincpik)))
                self.p.addStage(mincpik)
                self.individualImages.append(outputMincpik)
                # we should add a label to each of the individual images
                # so it will be easier for the user to identify what
                # which images potentially fail
                outputConvert = createBaseName(inFile.tmpDir, 
                                               removeBaseAndExtension(inputToMincpik) + "_QC_image_labeled.png")
                cmdConvert = ["convert", "-label", inFile.basename,
                              InputFile(outputMincpik),
                              OutputFile(outputConvert)]
                convertAddLabel = CmdStage(cmdConvert)
                convertAddLabel.setLogFile(LogFile(logFromFile(inFile.logDir, outputConvert)))
                self.p.addStage(convertAddLabel)
                self.individualImagesLabeled.append(outputConvert)

        # if montageOutput is specified, create the overview image
        if createMontage:
            cmdmontage = ["montage", "-geometry", "+2+2"] \
                         + map(InputFile, self.individualImagesLabeled) + [OutputFile(montageOutPut)]
            montage = CmdStage(cmdmontage)
            montage.setLogFile(splitext(montageOutPut)[0] + ".log")
            message_to_print = "\n* * * * * * *\nPlease consider the following verification "
            message_to_print += "image, which shows a slice through all input "
            message_to_print += "files %s. " % self.message
            message_to_print += "\n%s\n" % (montageOutPut)
            message_to_print += "* * * * * * *\n"
            # the hook needs a return. Given that "print" does not return
            # anything, we need to encapsulate the print statement in a 
            # function (which in this case will return None, but that's fine)
            def printMessageForMontage():
                print(message_to_print)
            montage.finished_hooks.append(
                lambda : printMessageForMontage())
            self.p.addStage(montage)
Exemple #38
0
 def iterate(self):
     if not self.maxPairs:
         xfmsToAvg = {}
         lsq12ResampledFiles = {}
         for inputFH in self.inputs:
             """Create an array of xfms, to compute an average lsq12 xfm for each input"""
             xfmsToAvg[inputFH] = []
             for targetFH in self.inputs:
                 if inputFH != targetFH:
                     lsq12 = LSQ12(inputFH,
                                   targetFH,
                                   blurs=self.blurs,
                                   step=self.stepSize,
                                   gradient=self.useGradient,
                                   simplex=self.simplex,
                                   w_translations=self.w_translations)
                     self.p.addPipeline(lsq12.p)
                     xfmsToAvg[inputFH].append(inputFH.getLastXfm(targetFH))
             """Create average xfm for inputFH using xfmsToAvg array"""
             cmd = ["xfmavg"]
             for i in range(len(xfmsToAvg[inputFH])):
                 cmd.append(InputFile(xfmsToAvg[inputFH][i]))
             avgXfmOutput = createBaseName(
                 inputFH.transformsDir, inputFH.basename + "-avg-lsq12.xfm")
             cmd.append(OutputFile(avgXfmOutput))
             xfmavg = CmdStage(cmd)
             xfmavg.setLogFile(
                 LogFile(logFromFile(inputFH.logDir, avgXfmOutput)))
             self.p.addStage(xfmavg)
             self.lsq12AvgXfms[inputFH] = avgXfmOutput
             """ resample brain and add to array for mincAveraging"""
             if not self.likeFile:
                 likeFile = inputFH
             else:
                 likeFile = self.likeFile
             rslOutput = createBaseName(
                 inputFH.resampledDir,
                 inputFH.basename + "-resampled-lsq12.mnc")
             res = ma.mincresample(inputFH,
                                   inputFH,
                                   transform=avgXfmOutput,
                                   likeFile=likeFile,
                                   output=rslOutput,
                                   argArray=["-sinc"])
             self.p.addStage(res)
             lsq12ResampledFiles[inputFH] = rslOutput
         """ After all registrations complete, setLastBasevol for each subject to be
             resampled file in lsq12 space. We can then call mincAverage on fileHandlers,
             as it will use the lastBasevol for each by default."""
         for inputFH in self.inputs:
             inputFH.setLastBasevol(lsq12ResampledFiles[inputFH])
         """ mincAverage all resampled brains and put in lsq12Directory"""
         self.lsq12Avg = abspath(self.lsq12Dir) + "/" + basename(
             self.lsq12Dir) + "-pairs.mnc"
         self.lsq12AvgFH = RegistrationPipeFH(self.lsq12Avg,
                                              basedir=self.lsq12Dir)
         avg = ma.mincAverage(self.inputs,
                              self.lsq12AvgFH,
                              output=self.lsq12Avg,
                              defaultDir=self.lsq12Dir)
         self.p.addStage(avg)
     else:
         print "Registration using a specified number of max pairs not yet working. Check back soon!"
         sys.exit()
Exemple #39
0
 def __init__(self,
              inSource,
              inTarget,
              output=None,
              logFile=None,
              defaultDir="transforms", 
              blur=[-1, 0.056],
              gradient=[False, True],
              target_mask=None, #ANTS only uses one mask
              similarity_metric=["CC", "CC"],
              weight=[1,1],
              iterations="100x100x100x150",
              radius_or_histo=[3,3],
              transformation_model="SyN[0.1]", 
              regularization="Gauss[2,1]",
              useMask=True):
     CmdStage.__init__(self, None) #don't do any arg processing in superclass
     try: 
         if isFileHandler(inSource, inTarget):
             """Same defaults as minctracc class:
                 blur = None --> return lastblur
                 gradient = True --> return gradient instead of blur
                 if blur = -1 --> lastBaseVol returned and gradient ignored"""
             self.source = []
             self.target = []
             # Need to check that length of blur, gradient, similarity, weight
             # and radius_or_histo are the same
             self.checkArrayLengths(blur, 
                                    gradient, 
                                    similarity_metric,
                                    weight,
                                    radius_or_histo)
             for i in range(len(blur)):
                 self.source.append(inSource.getBlur(blur[i], gradient[i]))
                 self.target.append(inTarget.getBlur(blur[i], gradient[i]))
             """If no output transform is specified, use registerVolume to create a default.
                If an output transform name is specified, use this as the output, and add it as the last xfm between source and target. 
                Note: The output file passed in must be a full path."""
             if not output:
                 outputXfm = inSource.registerVolume(inTarget, defaultDir)
                 self.output = outputXfm
             else:
                 self.output = output
                 inSource.addAndSetXfmToUse(inTarget, self.output)
             self.logFile = fh.logFromFile(inSource.logDir, self.output)
             self.useMask=useMask
             if self.useMask:
                 self.target_mask = inTarget.getMask()
         else:
             self.source = inSource
             self.target = inTarget
             #MF TODO: Need to find a way to specify multiple source and targets
             #based on blur and gradient 
             self.output = output
             if not logFile:
                 self.logFile = fh.logFromFile(abspath(curdir), output)
             else:
                 self.logFile = logFile
             self.useMask=useMask
             if self.useMask:
                 self.target_mask = target_mask
     except:
         print "Failed in putting together mincANTS command."
         print "Unexpected error: ", sys.exc_info()
     
     self.similarity_metric = similarity_metric
     self.weight = weight 
     self.iterations = iterations
     self.radius_or_histo = radius_or_histo
     """Single quotes needed on the command line for 
        transformation_model and regularization
     """
     self.transformation_model = "'" + transformation_model + "'" 
     self.regularization = "'" + regularization + "'"
     
     self.addDefaults()
     self.finalizeCommand()
     self.setName()
     self.colour = "red"