Exemple #1
0
def main(args):
    p = CompoundParser([
        execution_parser, application_parser, registration_parser,
        AnnotatedParser(parser=mk_mbm_parser(), namespace="mbm")
    ])

    options = parse(p, args[1:])
    stages = asymmetry_pipeline(options).stages
    execute(stages, options)
def main(args):
    p = CompoundParser(
          [execution_parser,
           application_parser,
           registration_parser,
           AnnotatedParser(parser=mk_mbm_parser(), namespace="mbm")])

    options = parse(p, args[1:])
    stages = asymmetry_pipeline(options).stages
    execute(stages, options)
def main(args):
    # TODO rewrite using `mk_application`
    p = CompoundParser(
          [execution_parser,
           application_parser,
           registration_parser,
           tamarack_parser,
           AnnotatedParser(parser=mk_mbm_parser(with_common_space=False,
                                                with_maget=True),
                           namespace="mbm")])

    options = parse(p, args[1:])
    stages = tamarack_pipeline(options).stages
    execute(stages, options)
def main(args):
    p = CompoundParser(
          [execution_parser,
           application_parser,
           registration_parser,
           #twolevel_parser,
           AnnotatedParser(parser=mk_mbm_parser(with_common_space=False), namespace="mbm"),   # TODO use this before 1st-/2nd-level args
           # TODO to combine the information from all three MBM parsers,
           # could use `ConfigArgParse`r `_source_to_settings` (others?) to check whether an option was defaulted
           # or user-specified, allowing the first/second-level options to override the general mbm settings
           #AnnotatedParser(parser=mbm_parser, namespace="first_level", prefix="first-level"),
           #AnnotatedParser(parser=mbm_parser, namespace="second_level", prefix="second-level"),
           #stats_parser
           #segmentation_parser
           ])  # TODO add more stats parsers?

    options = parse(p, args[1:])

    execute(two_level_pipeline(options).stages, options)
def main(args):
    p = CompoundParser([
        execution_parser,
        application_parser,
        registration_parser,
        #twolevel_parser,
        AnnotatedParser(
            parser=mk_mbm_parser(with_common_space=False),
            namespace="mbm"),  # TODO use this before 1st-/2nd-level args
        # TODO to combine the information from all three MBM parsers,
        # could use `ConfigArgParse`r `_source_to_settings` (others?) to check whether an option was defaulted
        # or user-specified, allowing the first/second-level options to override the general mbm settings
        #AnnotatedParser(parser=mbm_parser, namespace="first_level", prefix="first-level"),
        #AnnotatedParser(parser=mbm_parser, namespace="second_level", prefix="second-level"),
        #stats_parser
        #segmentation_parser
    ])  # TODO add more stats parsers?

    options = parse(p, args[1:])

    execute(two_level_pipeline(options).stages, options)
Exemple #6
0
         for img, xfm in zip(df["anatomical_lsq6_MincAtom"], df["lsq6_to_atlas_XfmAtom"])],
        count_targetspace_MincAtom=lambda df:
        [s.defer(mincresample_new(img=img, xfm=xfm, like=atlas_target))
         for img, xfm in zip(df["count_lsq6_MincAtom"], df["lsq6_to_atlas_XfmAtom"])],
        atlas_lsq6space_MincAtom=lambda df:
        [s.defer(mincresample_new(img=atlas_target_label, xfm=xfm, like=like, invert=True,
                                  interpolation=Interpolation.nearest_neighbour,
                                  extra_flags=('-keep_real_range',)))
         for xfm, like in zip( df["lsq6_to_atlas_XfmAtom"], df["count_lsq6_MincAtom"])]
    )

    csv.applymap(maybe_deref_path).to_csv("analysis.csv",index=False)

    s.defer(create_quality_control_images(imgs=csv.count_targetspace_MincAtom.tolist(), montage_dir=output_dir,
                                          montage_output=os.path.join(output_dir, pipeline_name + "_resampled",
                                                                      "count_montage"),
                                          auto_range=True,
                                          message="count_mincs"))
    return Result(stages=s, output=())


lsq6_parser = AnnotatedParser(parser=BaseParser(_mk_lsq6_parser(with_nuc=False, with_inormalize=False), "LSQ6"),
                              namespace="lsq6", cast=to_lsq6_conf)
tv_pipeline_application = mk_application(parsers=[AnnotatedParser(parser=mk_mbm_parser(with_common_space=False,
                                                                                       lsq6_parser=lsq6_parser),
                                                                  namespace="mbm"),
                                                  consensus_to_atlas_parser],
                                         pipeline=tissue_vision_pipeline)

if __name__ == "__main__":
    tv_pipeline_application()