def runIk(self, fields):

        self.checkJointNameOrder(fields)

        ikoptions = self.makeIkOptions(fields)

        constraints = self.makeConstraints(fields)

        # todo
        # set joint limits on rigidBodyTree from fields.jointLimits

        q_nom = np.asarray(fields.poses[fields.nominalPose], dtype=float)
        q_seed = np.asarray(fields.poses[fields.seedPose], dtype=float)


        if rbt is RigidBodyTreeCompatOld:
            results = pydrakeik.inverseKinSimple(self.rigidBodyTree, q_seed, q_nom, constraints, ikoptions)
            q_end = results.q_sol
            info = results.INFO
        else:
            results = pydrakeik.InverseKin(self.rigidBodyTree, q_seed, q_nom, constraints, ikoptions)
            q_end = results.q_sol[0]
            info = results.info[0]

        #for i in xrange(len(results.infeasible_constraints)):
        #    print 'infeasible constraint:', results.infeasible_constraints[i]

        # convert shape from Nx1 to N
        q_end.shape = q_end.shape[0]

        return q_end, info
Exemple #2
0
    def runIk(self, fields):

        self.checkJointNameOrder(fields)

        ikoptions = self.makeIkOptions(fields)

        constraints = self.makeConstraints(fields)

        # todo
        # set joint limits on rigidBodyTree from fields.jointLimits

        q_nom = np.asarray(fields.poses[fields.nominalPose], dtype=float)
        q_seed = np.asarray(fields.poses[fields.seedPose], dtype=float)

        if rbt is RigidBodyTreeCompatOld:
            results = pydrakeik.inverseKinSimple(self.rigidBodyTree, q_seed,
                                                 q_nom, constraints, ikoptions)
            q_end = results.q_sol
            info = results.INFO
        else:
            results = pydrakeik.InverseKin(self.rigidBodyTree, q_seed, q_nom,
                                           constraints, ikoptions)
            q_end = results.q_sol[0]
            info = results.info[0]

        #for i in xrange(len(results.infeasible_constraints)):
        #    print 'infeasible constraint:', results.infeasible_constraints[i]

        # convert shape from Nx1 to N
        q_end.shape = q_end.shape[0]

        return q_end, info
Exemple #3
0
    def testPostureConstraint(self):
        r = pydrake.rbtree.RigidBodyTree(
            os.path.join(pydrake.getDrakePath(),
                         "examples/Pendulum/Pendulum.urdf"))
        q = -0.9
        posture_constraint = ik.PostureConstraint(r)
        posture_constraint.setJointLimits(np.array([[6]], dtype=np.int32),
                                          np.array([[q]]), np.array([[q]]))
        # Choose a seed configuration (randomly) and a nominal configuration (at 0)
        q_seed = np.vstack((np.zeros((6, 1)), 0.8147))
        q_nom = np.vstack((np.zeros((6, 1)), 0.))

        options = ik.IKoptions(r)
        results = ik.inverseKinSimple(r, q_seed, q_nom, [posture_constraint],
                                      options)
        self.assertAlmostEqual(results.q_sol[6], q, 1e-9)
Exemple #4
0
    def testPostureConstraint(self):
        r = pydrake.rbtree.RigidBodyTree(os.path.join(pydrake.getDrakePath(), "examples/Pendulum/Pendulum.urdf"))
        q = -0.9
        posture_constraint = ik.PostureConstraint(r)
        posture_constraint.setJointLimits(np.array([[6]], dtype=np.int32),
                                          np.array([[q]]),
                                          np.array([[q]]))
        # Choose a seed configuration (randomly) and a nominal configuration (at 0)
        q_seed = np.vstack((np.zeros((6,1)),
                            0.8147))
        q_nom = np.vstack((np.zeros((6,1)),
                       0.))

        options = ik.IKoptions(r)
        results = ik.inverseKinSimple(r,
                                      q_seed,
                                      q_nom,
                                      [posture_constraint],
                                      options)
        self.assertAlmostEqual(results.q_sol[6], q, 1e-9)
Exemple #5
0
                                          np.array([1.0, 0.0, 0.0]),
                                          np.array([np.nan, np.nan, 0.0]),
                                          np.array([np.nan, np.nan, 0.0])),
               ik.WorldPositionConstraint(robot, base_body_id,
                                          np.array([0.0, 1.0, 0.0]),
                                          np.array([np.nan, np.nan, 0.0]),
                                          np.array([np.nan, np.nan, 0.0])),

               # This constraint exactly specifies the desired position of the
               # hand frame we defined earlier.
               ik.WorldPositionConstraint(robot, hand_frame_id,
                                          np.array([0.0, 0.0, 0.0]),
                                          np.array([0.5, 0.0, 0.6]),
                                          np.array([0.5, 0.0, 0.6])),
               # And this specifies the orientation of that frame
               ik.WorldEulerConstraint(robot, hand_frame_id,
                                       np.array([0.0, 0.0, 0.0]),
                                       np.array([0.0, 0.0, 0.0]))
               ]

q_seed = robot.getZeroConfiguration()
options = ik.IKoptions(robot)
results = ik.inverseKinSimple(robot, q_seed, q_seed, constraints, options)

# results.INFO gives the output status of SNOPT. INFO = 1 is good, anything
# less than 10 is OK, and any info >= 10 indicates an infeasibility or failure
# of the optimizer.
assert results.INFO == 1

print repr(results.q_sol)
Exemple #6
0
    ik.WorldPositionConstraint(robot, base_body_id, np.array([0.0, 0.0, 0.0]),
                               np.array([np.nan, np.nan, 0.0]),
                               np.array([np.nan, np.nan, 0.0])),
    ik.WorldPositionConstraint(robot, base_body_id, np.array([1.0, 0.0, 0.0]),
                               np.array([np.nan, np.nan, 0.0]),
                               np.array([np.nan, np.nan, 0.0])),
    ik.WorldPositionConstraint(robot, base_body_id, np.array([0.0, 1.0, 0.0]),
                               np.array([np.nan, np.nan, 0.0]),
                               np.array([np.nan, np.nan, 0.0])),

    # This constraint exactly specifies the desired position of the
    # hand frame we defined earlier.
    ik.WorldPositionConstraint(robot, hand_frame_id, np.array([0.0, 0.0, 0.0]),
                               np.array([0.5, 0.0, 0.6]),
                               np.array([0.5, 0.0, 0.6])),
    # And this specifies the orientation of that frame
    ik.WorldEulerConstraint(robot, hand_frame_id, np.array([0.0, 0.0, 0.0]),
                            np.array([0.0, 0.0, 0.0]))
]

q_seed = robot.getZeroConfiguration()
options = ik.IKoptions(robot)
results = ik.inverseKinSimple(robot, q_seed, q_seed, constraints, options)

# results.info gives the output status of SNOPT. info = 1 is good, anything
# less than 10 is OK, and any info >= 10 indicates an infeasibility or failure
# of the optimizer.
assert results.info == 1

print repr(results.q_sol)
Exemple #7
0
    def solveAndDraw(constraints):

        results = ik.inverseKinSimple(robot, q_seed, q_seed, constraints,
                                      options)
        pose = results.q_sol
        robotSystem.robotStateJointController.setPose('pose_end', pose)
Exemple #8
0
    def solveAndDraw(constraints):

        results = ik.inverseKinSimple(robot, q_seed, q_seed, constraints, options)
        pose = results.q_sol
        robotSystem.robotStateJointController.setPose('pose_end', pose)