def setUp(self): try: import pydybm.arraymath.dycupy as dycupy amath.setup(dycupy) print('\ncupy test') setup = getattr(super(CupyTestMixin, self), 'setUp', None) if setup is not None: setup() except ImportError: print('cupy test skipped') self.skipTest( 'cupy is not installed and tests with cupy are passed')
def setUp(self): amath.setup(dynumpy) print('\nnumpy test') setup = getattr(super(NumpyTestMixin, self), 'setUp', None) if setup is not None: setup()
delta = SGD.get_delta() SGD.update_with_L1_regularization(variables, delta, L1) t += 1 softerrors = dict() prederrors = dict() softerrors["lay1"] = softerr1 / (tm1) softerrors["lay2"] = softerr2 / (tm1) softerrors["laym"] = softerrm / (tm1) # prederrors["lay1"] = err1 * 100.0 / (tm1) # prederrors["lay2"] = err2 * 100.0 / (tm1) prederrors["laym"] = errm * 100.0 / (tm1) return prederrors, softerrors, variables amath.setup(dycupy) chunkfile = '/home/user01/dev/language-model/chunks256.p' train1280 = '/home/user01/dev/language-model/train1280.p' test128 = '/home/user01/dev/language-model/test128.p' chunklist = pickle.load(open(chunkfile, "rb")) layerscales = dict() variables = dict() inweights = dict() L2 = dict() L1 = dict() steps = dict() trainchunks = [] testchunks = [] cp.random.seed(481639)