Exemple #1
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    dfs = [metadata.parse_fx_par(fn) for fn in args.input]
    n = dfs[0].shape[0]
    if not np.all(np.array([df.shape[0] for df in dfs]) == n):
        log.error("Input files are not aligned!")
        return 1
    df = pd.concat(dfs, axis=0, ignore_index=True)
    df["CLASS"] = np.repeat(np.arange(1, len(dfs) + 1), n)

    if args.min_occ:
        df = df[df["OCC"] >= args.min_occ]

    df = df.sort_values(by="OCC")
    df = df.drop_duplicates("C", keep="last")
    df = df.sort_values(by="C")

    df = metadata.par2star(df,
                           data_path=args.stack,
                           apix=args.apix,
                           cs=args.cs,
                           ac=args.ac,
                           kv=args.voltage,
                           invert_eulers=args.relion)

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    star.write_star(args.output, df, reindex=True)
    return 0
Exemple #2
0
def main(args):
    if args.data_path is None:
        args.data_path = args.input.rstrip(".par") + ".mrcs"
        print("No stack path provided, using %s" % args.data_path)
    df = parse_fx_par(args.input)
    df = par2star(df,
                  data_path=args.data_path,
                  apix=args.apix,
                  cs=args.cs,
                  ac=args.ac,
                  kv=args.voltage)
    write_star(args.output, df, reindex=True)
    return 0
Exemple #3
0
def main(args):
    par = [parse_par(inp) for inp in args.input]
    if len(par) > 1:
        idx = par[:, :, "OCC"].idxmax(axis=1)
    else:
        par = par[0]

    if args.data_path is not None:
        par["Input particle images"] = args.data_path
    if args.voltage is not None:
        par["Beam energy (keV)"] = args.voltage
    if args.cs is not None:
        par["Spherical aberration (mm)"] = args.cs
    if args.ac is not None:
        par["Amplitude contrast"] = args.ac
    if args.apix is not None:
        par["Pixel size of images (A)"] = args.apix
    star = par2star(par)
    write_star(args.output, star, reindex=True)
    return 0
Exemple #4
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    dfs = [metadata.parse_fx_par(fn) for fn in args.input]
    n = dfs[0].shape[0]
    if not np.all(np.array([df.shape[0] for df in dfs]) == n):
        log.error("Input files are not aligned!")
        return 1
    df = pd.concat(dfs, axis=0, ignore_index=True)
    df["CLASS"] = np.repeat(np.arange(1, len(dfs) + 1), n)

    if args.min_occ:
        df = df[df["OCC"] >= args.min_occ]

    df = df.sort_values(by="OCC")
    df = df.drop_duplicates("C", keep="last")
    df = df.sort_values(by="C")
    df.reset_index(inplace=True)

    if args.min_score is not None:
        if args.min_score < 1:
            args.min_score = np.percentile(df["SCORE"],
                                           (1 - args.min_score) * 100)
        df = df.loc[df["SCORE"] >= args.min_score]

    if args.merge is not None:
        dfo = star.parse_star(args.merge)
        args.apix = star.calculate_apix(dfo)
        args.cs = dfo.iloc[0][star.Relion.CS]
        args.ac = dfo.iloc[0][star.Relion.AC]
        args.voltage = dfo.iloc[0][star.Relion.VOLTAGE]
        df = metadata.par2star(df,
                               data_path=args.stack,
                               apix=args.apix,
                               cs=args.cs,
                               ac=args.ac,
                               kv=args.voltage,
                               invert_eulers=args.invert_eulers)
        if args.stack is None:
            df[star.UCSF.IMAGE_INDEX] = dfo[star.UCSF.IMAGE_INDEX]
            df[star.UCSF.IMAGE_PATH] = dfo[star.UCSF.IMAGE_PATH]
        key = [star.UCSF.IMAGE_INDEX, star.UCSF.IMAGE_PATH]
        fields = star.Relion.MICROGRAPH_COORDS + [
            star.UCSF.IMAGE_ORIGINAL_INDEX, star.UCSF.IMAGE_ORIGINAL_PATH
        ] + [star.Relion.OPTICSGROUP
             ] + star.Relion.OPTICSGROUPTABLE + [star.Relion.RANDOMSUBSET]
        df = star.smart_merge(df, dfo, fields=fields, key=key)
        if args.revert_original:
            df = star.revert_original(df, inplace=True)
    else:
        df = metadata.par2star(df,
                               data_path=args.stack,
                               apix=args.apix,
                               cs=args.cs,
                               ac=args.ac,
                               kv=args.voltage,
                               invert_eulers=args.invert_eulers)

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    df = star.check_defaults(df, inplace=True)
    df = star.compatible(df, relion2=args.relion2, inplace=True)
    star.write_star(args.output, df, optics=(not args.relion2))
    return 0
Exemple #5
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))
    # apix = args.apix = hdr["xlen"] / hdr["nx"]

    for fn in args.input:
        if not (fn.endswith(".star") or fn.endswith(".mrcs")
                or fn.endswith(".mrc") or fn.endswith(".par")):
            log.error("Only .star, .mrc, .mrcs, and .par files supported")
            return 1

    first_ptcl = 0
    dfs = []
    with mrc.ZSliceWriter(args.output) as writer:
        for fn in args.input:
            if fn.endswith(".star"):
                df = star.parse_star(fn, keep_index=False)
                star.augment_star_ucsf(df)
                star.set_original_fields(df, inplace=True)
                df = df.sort_values([
                    star.UCSF.IMAGE_ORIGINAL_PATH,
                    star.UCSF.IMAGE_ORIGINAL_INDEX
                ])
                gb = df.groupby(star.UCSF.IMAGE_ORIGINAL_PATH)
                for name, g in gb:
                    with mrc.ZSliceReader(name) as reader:
                        for i in g[star.UCSF.IMAGE_ORIGINAL_INDEX].values:
                            writer.write(reader.read(i))
            elif fn.endswith(".par"):
                if args.stack_path is None:
                    log.error(".par file input requires --stack-path")
                    return 1
                df = metadata.par2star(metadata.parse_fx_par(fn),
                                       data_path=args.stack_path)
                # star.set_original_fields(df, inplace=True)  # Redundant.
                star.augment_star_ucsf(df)
            elif fn.endswith(".csv"):
                return 1
            elif fn.endswith(".cs"):
                return 1
            else:
                if fn.endswith(".mrcs"):
                    with mrc.ZSliceReader(fn) as reader:
                        for img in reader:
                            writer.write(img)
                        df = pd.DataFrame({
                            star.UCSF.IMAGE_ORIGINAL_INDEX:
                            np.arange(reader.nz)
                        })
                    df[star.UCSF.IMAGE_ORIGINAL_PATH] = fn
                else:
                    print("Unrecognized input file type")
                    return 1
            if args.star is not None:
                df[star.UCSF.IMAGE_INDEX] = np.arange(first_ptcl,
                                                      first_ptcl + df.shape[0])
                df[star.UCSF.IMAGE_PATH] = writer.path
                df["index"] = df[star.UCSF.IMAGE_INDEX]
                star.simplify_star_ucsf(df)
                dfs.append(df)
            first_ptcl += df.shape[0]

            if args.star is not None:
                df = pd.concat(dfs, join="inner")
                # df = pd.concat(dfs)
                # df = df.dropna(df, axis=1, how="any")
                star.write_star(args.star, df, reindex=True)

    return 0
Exemple #6
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))
    # apix = args.apix = hdr["xlen"] / hdr["nx"]

    for fn in args.input:
        if not (fn.endswith(".star") or fn.endswith(".mrcs") or
                fn.endswith(".mrc") or fn.endswith(".par")):
            log.error("Only .star, .mrc, .mrcs, and .par files supported")
            return 1

    first_ptcl = 0
    dfs = []
    with mrc.ZSliceWriter(args.output) as writer:
        for fn in args.input:
            if fn.endswith(".star"):
                df = star.parse_star(fn, augment=True)
                if args.cls is not None:
                    df = star.select_classes(df, args.cls)
                star.set_original_fields(df, inplace=True)
                if args.resort:
                    df = df.sort_values([star.UCSF.IMAGE_ORIGINAL_PATH,
                                         star.UCSF.IMAGE_ORIGINAL_INDEX])
                for idx, row in df.iterrows():
                    if args.stack_path is not None:
                        input_stack_path = os.path.join(args.stack_path, row[star.UCSF.IMAGE_ORIGINAL_PATH])
                    else:
                        input_stack_path = row[star.UCSF.IMAGE_ORIGINAL_PATH]
                    with mrc.ZSliceReader(input_stack_path) as reader:
                        i = row[star.UCSF.IMAGE_ORIGINAL_INDEX]
                        writer.write(reader.read(i))
            elif fn.endswith(".par"):
                if args.stack_path is None:
                    log.error(".par file input requires --stack-path")
                    return 1
                df = metadata.par2star(metadata.parse_fx_par(fn), data_path=args.stack_path)
                # star.set_original_fields(df, inplace=True)  # Redundant.
                star.augment_star_ucsf(df)
            elif fn.endswith(".csv"):
                return 1
            elif fn.endswith(".cs"):
                return 1
            else:
                if fn.endswith(".mrcs"):
                    with mrc.ZSliceReader(fn) as reader:
                        for img in reader:
                            writer.write(img)
                        df = pd.DataFrame(
                            {star.UCSF.IMAGE_ORIGINAL_INDEX: np.arange(reader.nz)})
                    df[star.UCSF.IMAGE_ORIGINAL_PATH] = fn
                else:
                    print("Unrecognized input file type")
                    return 1
            if args.star is not None:
                df[star.UCSF.IMAGE_INDEX] = np.arange(first_ptcl,
                                                      first_ptcl + df.shape[0])
                if args.abs_path:
                    df[star.UCSF.IMAGE_PATH] = writer.path
                else:
                    df[star.UCSF.IMAGE_PATH] = os.path.relpath(writer.path, os.path.dirname(args.star))
                df["index"] = df[star.UCSF.IMAGE_INDEX]
                star.simplify_star_ucsf(df)
                dfs.append(df)
            first_ptcl += df.shape[0]

    if args.star is not None:
        df = pd.concat(dfs, join="inner")
        # df = pd.concat(dfs)
        # df = df.dropna(df, axis=1, how="any")
        if not args.relion2:  # Relion 3.1 style output.
            df = star.remove_deprecated_relion2(df, inplace=True)
            star.write_star(args.star, df, resort_records=False, optics=True)
        else:
            df = star.remove_new_relion31(df, inplace=True)
            star.write_star(args.star, df, resort_records=False, optics=False)
    return 0