Exemple #1
0
    def filenames(self, filename_list):

        if isinstance(filename_list, str):
            filename_list = [filename_list]

        uniq = set(filename_list)
        if len(uniq) != len(filename_list):
            self.logger.warning("duplicate files/arrays detected")
            filename_list = list(uniq)

        from pyemma.coordinates.data.data_in_memory import DataInMemory

        if self._is_reader:
            if isinstance(self, DataInMemory):
                import warnings
                warnings.warn('filenames are not being used for DataInMemory')
                return

            self._ntraj = len(filename_list)
            if self._ntraj == 0:
                raise ValueError("empty file list")

            # validate files
            for f in filename_list:
                try:
                    stat = os.stat(f)
                except EnvironmentError:
                    self.logger.exception('Error during access of file "%s"' %
                                          f)
                    raise ValueError('could not read file "%s"' % f)

                if not os.path.isfile(
                        f):  # can be true for symlinks to directories
                    raise ValueError('"%s" is not a valid file')

                if stat.st_size == 0:
                    raise ValueError('file "%s" is empty' % f)

            # number of trajectories/data sets
            self._filenames = filename_list
            # determine len and dim via cache lookup,
            lengths = []
            offsets = []
            ndims = []
            # avoid cyclic imports
            from pyemma.coordinates.data.util.traj_info_cache import TrajectoryInfoCache
            from pyemma._base.progress import ProgressReporter
            pg = ProgressReporter()
            pg.register(len(filename_list), 'Obtaining file info')
            with pg.context():
                for filename in filename_list:
                    if config.use_trajectory_lengths_cache:
                        info = TrajectoryInfoCache.instance()[filename, self]
                    else:
                        info = self._get_traj_info(filename)
                    # nested data set support.
                    if hasattr(info, 'children'):
                        lengths.append(info.length)
                        offsets.append(info.offsets)
                        ndims.append(info.ndim)
                        for c in info.children:
                            lengths.append(c.length)
                            offsets.append(c.offsets)
                            ndims.append(c.ndim)
                    else:
                        lengths.append(info.length)
                        offsets.append(info.offsets)
                        ndims.append(info.ndim)
                    if len(filename_list) > 3:
                        pg.update(1)

            # ensure all trajs have same dim
            if not np.unique(ndims).size == 1:
                # group files by their dimensions to give user indicator
                ndims = np.array(ndims)
                filename_list = np.asarray(filename_list)
                sort_inds = np.argsort(ndims)
                import itertools, operator
                res = {}
                for dim, files in itertools.groupby(
                        zip(ndims[sort_inds], filename_list[sort_inds]),
                        operator.itemgetter(0)):
                    res[dim] = list(f[1] for f in files)

                raise ValueError(
                    "Input data has different dimensions ({dims})!"
                    " Files grouped by dimensions: {groups}".format(
                        dims=res.keys(), groups=res))

            self._ndim = ndims[0]
            self._lengths = lengths
            self._offsets = offsets

        else:
            # propagate this until we finally have a a reader
            self.data_producer.filenames = filename_list
 def setUpClass(cls):
     cls.old_instance = TrajectoryInfoCache.instance()
     config.use_trajectory_lengths_cache = True
Exemple #3
0
 def test_get_instance(self):
     # test for exceptions in singleton creation
     inst = TrajectoryInfoCache.instance()
     inst.current_db_version
Exemple #4
0
    def filenames(self, filename_list):

        if isinstance(filename_list, string_types):
            filename_list = [filename_list]

        uniq = set(filename_list)
        if len(uniq) != len(filename_list):
            self.logger.warning("duplicate files/arrays detected")
            filename_list = list(uniq)

        from pyemma.coordinates.data.data_in_memory import DataInMemory

        if self._is_reader:
            if isinstance(self, DataInMemory):
                import warnings
                warnings.warn('filenames are not being used for DataInMemory')
                return

            self._ntraj = len(filename_list)
            if self._ntraj == 0:
                raise ValueError("empty file list")

            # validate files
            for f in filename_list:
                try:
                    stat = os.stat(f)
                except EnvironmentError:
                    self.logger.exception('Error during access of file "%s"' % f)
                    raise ValueError('could not read file "%s"' % f)

                if not os.path.isfile(f): # can be true for symlinks to directories
                    raise ValueError('"%s" is not a valid file')

                if stat.st_size == 0:
                    raise ValueError('file "%s" is empty' % f)

            # number of trajectories/data sets
            self._filenames = filename_list
            # determine len and dim via cache lookup,
            lengths = []
            offsets = []
            ndims = []
            # avoid cyclic imports
            from pyemma.coordinates.data.util.traj_info_cache import TrajectoryInfoCache
            if len(filename_list) > 3:
                self._progress_register(len(filename_list), 'Obtaining file info')
            for filename in filename_list:
                if config['use_trajectory_lengths_cache'] == 'True':
                    info = TrajectoryInfoCache.instance()[filename, self]
                else:
                    info = self._get_traj_info(filename)
                lengths.append(info.length)
                offsets.append(info.offsets)
                ndims.append(info.ndim)
                if len(filename_list) > 3:
                    self._progress_update(1)

            # ensure all trajs have same dim
            if not np.unique(ndims).size == 1:
                raise ValueError("input data has different dimensions!"
                                 " Dimensions are = %s" % zip(filename_list, ndims))

            self._ndim = ndims[0]
            self._lengths = lengths
            self._offsets = offsets

        else:
            # propate this until we finally have a a reader?
            self.data_producer.filenames = filename_list