def test_reading_through_sheets(self): b = pe.BookReader(self.testfile) data = pe.utils.to_array(b["Sheet1"].rows()) expected = [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]] assert data == expected data = pe.to_array(b["Sheet2"].rows()) expected = [[4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6]] assert data == expected data = pe.to_array(b["Sheet3"].rows()) expected = [[u'X', u'Y', u'Z'], [1, 4, 7], [2, 5, 8], [3, 6, 9]] assert data == expected sheet3 = b["Sheet3"] s3 = sheet3.become_series() data = pe.to_array(s3.rows()) expected = [[1, 4, 7], [2, 5, 8], [3, 6, 9]] assert data == expected
def test_reading_through_sheets(self): b = pe.BookReader(self.testfile) data = pe.utils.to_array(b["Sheet1"].rows()) expected = [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]] assert data == expected data = pe.to_array(b["Sheet2"].rows()) expected = [[4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6]] assert data == expected data = pe.to_array(b["Sheet3"].rows()) expected = [[u'X', u'Y', u'Z'], [1, 4, 7], [2, 5, 8], [3, 6, 9]] assert data == expected sheet3 = b["Sheet3"] sheet3.name_columns_by_row(0) data = pe.to_array(sheet3.rows()) expected = [[1, 4, 7], [2, 5, 8], [3, 6, 9]] assert data == expected
def test_empty_series_reader(self): # debug this further s = pe.Sheet() # seriesreader is gone since v0.0.7 assert s.name == "pyexcel" test_data = [[1, 2, 3], [4, 5, 6], ["Column 1", "Column 2", "Column 3"]] s.column += pe.transpose(test_data) actual = pe.to_array(s) assert test_data == actual s.name_columns_by_row(2) assert s.colnames == test_data[2]
def test_empty_series_reader(self): # debug this further s = pe.Sheet() # seriesreader is gone since v0.0.7 assert s.name == "pyexcel sheet" test_data = [[1, 2, 3], [4, 5, 6], ["Column 1", "Column 2", "Column 3"]] s.column += pe.transpose(test_data) actual = pe.to_array(s) assert test_data == actual s.name_columns_by_row(2) assert s.colnames == test_data[2]
def input_from_excel(): input_sheet = excel.get_sheet(file_name="supers_data.xlsx", name_columns_by_row=0) records = excel.to_array(input_sheet.rows()) for record in records: if not irl_city_exist(record[3]) and record[5] != '' and record[6] != '': new_irl_city = IRLCity.objects.create(name=record[3], province=record[4], latitude=record[5] , longitude=record[6]) new_irl_city.save() if not universe_exist(record[2]): new_bang = Universe.objects.create(company_name=record[2], origin_country=record[8]) new_bang.save() if not super_exist(record[0]): if record[3] != '': city = IRLCity.objects.get(name=record[3]) universe = Universe.objects.get(company_name=record[2]) new_super = Super.objects.create(name=record[0],identity=record[7],origin_city=record[1],irl_city=city, company_universe=universe) new_super.save()
def main(base_dir): # print all in json # # Column 1 Column 2 Column 3 # 1 4 7 # 2 5 8 # 3 6 9 sheet = pe.load(os.path.join(base_dir, "example_series.ods"), name_columns_by_row=0) print(json.dumps(sheet.to_dict())) # output: # {"Column 2": [4.0, 5.0, 6.0], "Column 3": [7.0, 8.0, 9.0], "Column 1": [1.0, 2.0, 3.0]} # get the column headers print(sheet.colnames) # [u'Column 1', u'Column 2', u'Column 3'] # get the content in one dimensional array data = pe.to_array(sheet.enumerate()) print(data) # [1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0] # get the content in one dimensional array # in reverse order data = pe.to_array(sheet.reverse()) print(data) # get the content in one dimensional array # but iterate it vertically data = pe.to_array(sheet.vertical()) print(data) # [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] # get the content in one dimensional array # but iterate it vertically in revserse # order data = pe.to_array(sheet.rvertical()) print(data) #[9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0] # get a two dimensional array data = pe.to_array(sheet.rows()) print(data) #[[1.0, 4.0, 7.0], [2.0, 5.0, 8.0], [3.0, 6.0, 9.0]] # get a two dimensional array in reverse # order data = pe.to_array(sheet.rrows()) print(data) # [[3.0, 6.0, 9.0], [2.0, 5.0, 8.0], [1.0, 4.0, 7.0]] # get a two dimensional array but stack columns data = pe.to_array(sheet.columns()) print(data) # [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] # get a two dimensional array but stack columns # in reverse order data = pe.to_array(sheet.rcolumns()) print(data) #[[7.0, 8.0, 9.0], [4.0, 5.0, 6.0], [1.0, 2.0, 3.0]] # filter out odd rows and even columns sheet.filter(pe.OddRowFilter()) sheet.filter(pe.EvenColumnFilter()) data = sheet.to_dict() print(data) # {u'Column 3': [8.0], u'Column 1': [2.0]} # and you can write the filtered results # into a file sheet.save_as("example_series_filter.xls")
# for i in tweet: # print i # print "\n" trainclf = SVC(kernel='rbf', gamma=0.5) sc = 0 fulltext = [] fullutext = [] fulltag = [] book = pyexcel.get_book(file_name="English_Train-final.xlsx") for sheet in book: if sc == 3: break data = pyexcel.to_array(sheet.rows()) text = [] utext = [] tag = [] for tweet in data: tx = tweet[0] tx = clean(tx) utext.append(tweet[0]) text.append(tx) tag.append(tweet[1]) fullutext.append(tweet[0]) fulltext.append(tx) fulltag.append(tweet[1]) # for i,r in df.iterrows(): # tx=r['text']
def main(base_dir): # print all in json # # Column 1 Column 2 Column 3 # 1 4 7 # 2 5 8 # 3 6 9 sheet = pe.get_sheet(file_name=os.path.join(base_dir, "example_series.ods"), name_columns_by_row=0) print(json.dumps(sheet.to_dict())) # output: # {"Column 2": [4.0, 5.0, 6.0], "Column 3": [7.0, 8.0, 9.0], # "Column 1": [1.0, 2.0, 3.0]} # get the column headers print(sheet.colnames) # [u'Column 1', u'Column 2', u'Column 3'] # get the content in one dimensional array data = pe.to_array(sheet.enumerate()) print(data) # [1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0] # get the content in one dimensional array # in reverse order data = pe.to_array(sheet.reverse()) print(data) # get the content in one dimensional array # but iterate it vertically data = pe.to_array(sheet.vertical()) print(data) # [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] # get the content in one dimensional array # but iterate it vertically in revserse # order data = pe.to_array(sheet.rvertical()) print(data) # [9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0] # get a two dimensional array data = pe.to_array(sheet.rows()) print(data) # [[1.0, 4.0, 7.0], [2.0, 5.0, 8.0], [3.0, 6.0, 9.0]] # get a two dimensional array in reverse # order data = pe.to_array(sheet.rrows()) print(data) # [[3.0, 6.0, 9.0], [2.0, 5.0, 8.0], [1.0, 4.0, 7.0]] # get a two dimensional array but stack columns data = pe.to_array(sheet.columns()) print(data) # [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] # get a two dimensional array but stack columns # in reverse order data = pe.to_array(sheet.rcolumns()) print(data) # [[7.0, 8.0, 9.0], [4.0, 5.0, 6.0], [1.0, 2.0, 3.0]] # filter out odd rows and even columns sheet.filter(pe.OddRowFilter()) sheet.filter(pe.EvenColumnFilter()) data = sheet.to_dict() print(data) # {u'Column 3': [8.0], u'Column 1': [2.0]} # and you can write the filtered results # into a file sheet.save_as("example_series_filter.xls")
return p def lastex(sent): # print("out ex") return sent[len(sent)-1]=='!' def lastq(sent): # print("out q") return sent[len(sent)-1]=='?' book = pyexcel.get_book(file_name="English_Train-final.xlsx") for sheet in book: text=[] tag=[] data=pyexcel.to_array(sheet.rows()) for tweet in data: tx=tweet[0] tx=clean(tx) text.append(tx) if(tweet[1]==2): tag.append(tweet[2]) tag.append(tweet[1]) textlist=[] c=0 for sent in text: # textlist.append([has_modal(s),has_strong(s),has_personal(s),has_long(s), has_wh(s)]) textlist.append([has_long(sent), checknegation(sent), getnrcscore(sent),getemoscore(sent), counthashtags(sent), countupper(sent), lastex(sent), lastq(sent),gets140_bi(sent),gets140_uni(sent),gets140_an_bi(sent), gets140_an_uni(sent)])
# # Column 1 Column 2 Column 3 # 1 4 7 # 2 5 8 # 3 6 9 sheet = pe.load("example_series.ods", name_colmns_by_row=0) print json.dumps(sheet.to_dict()) # output: # {"Column 2": [4.0, 5.0, 6.0], "Column 3": [7.0, 8.0, 9.0], "Column 1": [1.0, 2.0, 3.0]} # get the column headers print sheet.colnames() # [u'Column 1', u'Column 2', u'Column 3'] # get the content in one dimensional array data = pe.to_array(sheet.enumerate()) print data # [1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0] # get the content in one dimensional array # in reverse order data = pe.to_array(sheet.reverse()) print data # get the content in one dimensional array # but iterate it vertically data = pe.to_array(sheet.vertical()) print data # [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] # get the content in one dimensional array