Exemple #1
0
    def test_Poisson(self):
        shape = 10, 100

        a = 1e-2 * torch.ones((shape[0], 1))
        dt = 1e-2
        dist = Poisson(dt * 0.1)

        init = Normal(a, 1.)
        sde = AffineEulerMaruyama((f_sde, g_sde), (a, 0.15),
                                  init,
                                  dist,
                                  dt=dt,
                                  num_steps=10)

        # ===== Initialize ===== #
        x = sde.i_sample(shape)

        # ===== Propagate ===== #
        num = 1000
        samps = [x]
        for t in range(num):
            samps.append(sde.propagate(samps[-1]))

        samps = torch.stack(samps)
        self.assertEqual(samps.size(), torch.Size([num + 1, *shape]))

        # ===== Sample path ===== #
        path = sde.sample_path(num + 1, shape)
        self.assertEqual(samps.shape, path.shape)
Exemple #2
0
    def test_SDE(self):
        shape = 1000, 100

        a = 1e-2 * torch.ones((shape[0], 1))
        dt = 0.1

        init = norm = DistributionWrapper(Normal, loc=a, scale=math.sqrt(dt))
        sde = AffineEulerMaruyama((f_sde, g_sde), (a, 0.15), init, norm, dt=dt, num_steps=10)

        # ===== Initialize ===== #
        x = sde.i_sample(shape)

        self.assert_timeseries_sampling(100, sde, x, shape)
Exemple #3
0
    def test_ParameterInDistribution(self):
        shape = 10, 100

        a = 1e-2 * torch.ones((shape[0], 1))
        dt = 1e-2
        dist = DistributionWrapper(Normal, loc=0.0, scale=Prior(Exponential, rate=10.0))

        init = DistributionWrapper(Normal, loc=a, scale=1.0)
        sde = AffineEulerMaruyama((f_sde, g_sde), (a, 0.15), init, dist, dt=dt, num_steps=10)

        sde.sample_params(shape)

        # ===== Initialize ===== #
        x = sde.i_sample(shape)

        self.assert_timeseries_sampling(100, sde, x, shape)
Exemple #4
0
    def test_SDE(self):
        def f(x, a, s):
            return -a * x

        def g(x, a, s):
            return s

        em = AffineEulerMaruyama((f, g), (0.02, 0.15), Normal(0., 1.), Normal(0., 1.), dt=1e-2, num_steps=10)
        model = LinearGaussianObservations(em, scale=1e-3)

        x, y = model.sample_path(500)

        with self.assertRaises(NotImplementedError):
            SISR(model, 200)

        for filt in [SISR(model, 500, proposal=Bootstrap()), UKF(model)]:
            filt = filt.initialize().longfilter(y)

            means = filt.filtermeans
            if isinstance(filt, UKF):
                means = means[:, 0]

            self.assertLess(torch.std(x - means), 5e-2)
Exemple #5
0
    def test_SDE(self):
        def f(x, a, s):
            return -a * x

        def g(x, a, s):
            return s

        dt = 1e-2
        norm = DistributionWrapper(Normal, loc=0.0, scale=sqrt(dt))

        em = AffineEulerMaruyama((f, g), (0.02, 0.15), norm, norm, dt=1e-2, num_steps=10)
        model = LinearGaussianObservations(em, scale=1e-3)

        x, y = model.sample_path(500)

        for filt in [SISR(model, 500, proposal=prop.Bootstrap()), UKF(model)]:
            result = filt.longfilter(y)

            means = result.filter_means
            if isinstance(filt, UKF):
                means = means[:, 0]

            self.assertLess(torch.std(x - means), 5e-2)