Exemple #1
0
    def _adapt_input(self, input):
        if input != None:
            input_names = input[0]
            self.input_len_names = len(input_names)
            self.input_real_value_refs = []
            self.input_real_mask = []
            self.input_other = []
            self.input_other_mask = []
            
            if isinstance(input_names,str):
                input_names = [input_names]
                
            for i,name in enumerate(input_names):
                if self._model.get_variable_causality(name) != fmi.FMI2_INPUT:
                    raise fmi.FMUException("Variable '%s' is not an input. Only variables specified to be inputs are allowed."%name)
                
                if self._model.get_variable_data_type(name) == fmi.FMI2_REAL:
                    self.input_real_value_refs.append(self._model.get_variable_valueref(name))
                    self.input_real_mask.append(i)
                else:
                    self.input_other.append(name)
                    self.input_other_mask.append(i)
            
            self.input_real_mask  = N.array(self.input_real_mask)
            self.input_other_mask = N.array(self.input_other_mask)

        self.input = input
Exemple #2
0
    def j(self, t, y, sw=None):
        """
        The jacobian function for an ODE problem.
        """
        if self._extra_f_nbr > 0:
            y_extra = y[-self._extra_f_nbr:]
            y       = y[:-self._extra_f_nbr]
            
        #Moving data to the model
        self._model.time = t
        #Check if there are any states
        if self._f_nbr != 0:
            self._model.continuous_states = y

        #Sets the inputs, if any
        self._set_input_values(t)
        
        #Evaluating the jacobian
        
        #If there are no states return a dummy jacobian.
        if self._f_nbr == 0:
            return N.array([[0.0]])
        
        A = self._model._get_A(add_diag=True, output_matrix=self._A)
        if self._A is None:
            self._A = A

        if self._extra_f_nbr > 0:
            if hasattr(self._extra_equations, "jac"):
                if self._sparse_representation:
                    
                    Jac = A.tocoo() #Convert to COOrdinate
                    A2 = self._extra_equations.jac(y_extra).tocoo()
                    
                    data = N.append(Jac.data, A2.data)
                    row  = N.append(Jac.row, A2.row+self._f_nbr)
                    col  = N.append(Jac.col, A2.col+self._f_nbr)
                    
                    #Convert to compresssed sparse column
                    Jac = sp.coo_matrix((data, (row, col)))
                    Jac = Jac.tocsc()
                else:
                    Jac = N.zeros((self._f_nbr+self._extra_f_nbr,self._f_nbr+self._extra_f_nbr))
                    Jac[:self._f_nbr,:self._f_nbr] = A if isinstance(A, N.ndarray) else A.toarray()
                    Jac[self._f_nbr:,self._f_nbr:] = self._extra_equations.jac(y_extra)
            else:
                raise fmi.FMUException("No Jacobian provided for the extra equations")
        else:
            Jac = A

        return Jac
Exemple #3
0
    def __init__(self, model, input=None, result_file_name='',
                 with_jacobian=False, start_time=0.0, logging=False, result_handler=None):
        """
        Initialize the problem.
        """
        self._model = model
        self._adapt_input(input)
        self.timings = {"handle_result": 0.0}

        #Set start time to the model
        self._model.time = start_time

        self.t0 = start_time
        self.y0 = self._model.continuous_states
        self.name = self._model.get_name()

        [f_nbr, g_nbr] = self._model.get_ode_sizes()

        self._f_nbr = f_nbr
        self._g_nbr = g_nbr

        if g_nbr > 0:
            self.state_events = self.g
        self.time_events = self.t

        #If there is no state in the model, add a dummy
        #state der(y)=0
        if f_nbr == 0:
            self.y0 = N.array([0.0])

        #Determine the result file name
        if result_file_name == '':
            self.result_file_name = model.get_name()+'_result.txt'
        else:
            self.result_file_name = result_file_name
        self.debug_file_name = model.get_name().replace(".","_")+'_debug.txt'
        self.debug_file_object = None

        #Default values
        self.export = result_handler
        
        #Internal values
        self._sol_time = []
        self._sol_real = []
        self._sol_int  = []
        self._sol_bool = []
        self._logg_step_event = []
        self._write_header = True
        self._logging = logging

        #Stores the first time point
        #[r,i,b] = self._model.save_time_point()

        #self._sol_time += [self._model.t]
        #self._sol_real += [r]
        #self._sol_int  += [i]
        #self._sol_bool += b
        
        self._jm_fmu = self._model.get_generation_tool() == "JModelica.org"

        if with_jacobian:
            raise fmi.FMUException("Jacobians are not supported using FMI 1.0, please use FMI 2.0")
Exemple #4
0
    def j(self, t, y, sw=None):
        """
        The jacobian function for an ODE problem.
        """
        if self._extra_f_nbr > 0:
            y_extra = y[-self._extra_f_nbr:]
            y = y[:-self._extra_f_nbr]

        #Moving data to the model
        self._model.time = t
        #Check if there are any states
        if self._f_nbr != 0:
            self._model.continuous_states = y

        #Sets the inputs, if any
        self._set_input_values(t)

        #Evaluating the jacobian

        #If there are no states return a dummy jacobian.
        if self._f_nbr == 0:
            return N.array([[0.0]])

        #Mimic the epsilon computation from the respective solver
        """
        if self._solver == "CVode":
            h = t - self._model._last_accepted_time
            w = 1.0/(self._model._relative_tolerance*abs(y)+self._model.nominal_continuous_states*self._model._relative_tolerance)
            fnorm = (sum((y*w)**2)/self._f_nbr)**0.5
            inc = (1000 * abs(h) * self._RUROUND * self._f_nbr * fnorm) if (fnorm != 0.0 and h != 0.0) else 1.0

            for i in range(self._f_nbr):
                w[i] = max(self._RUROUND*abs(y[i]), inc/w[i])
            eps = w
        elif self._solver == "Radau5ODE":
            eps = (self._UROUND*N.maximum(1e-5,abs(y)))**0.5
        else:
            eps = None
        """
        eps = None

        A = self._model._get_A(add_diag=True,
                               output_matrix=self._A,
                               perturbation=eps)
        if self._A is None:
            self._A = A

        if self._extra_f_nbr > 0:
            if hasattr(self._extra_equations, "jac"):
                if self._sparse_representation:

                    Jac = A.tocoo()  #Convert to COOrdinate
                    A2 = self._extra_equations.jac(y_extra).tocoo()

                    data = N.append(Jac.data, A2.data)
                    row = N.append(Jac.row, A2.row + self._f_nbr)
                    col = N.append(Jac.col, A2.col + self._f_nbr)

                    #Convert to compresssed sparse column
                    Jac = sp.coo_matrix((data, (row, col)))
                    Jac = Jac.tocsc()
                else:
                    Jac = N.zeros((self._f_nbr + self._extra_f_nbr,
                                   self._f_nbr + self._extra_f_nbr))
                    Jac[:self._f_nbr, :self._f_nbr] = A if isinstance(
                        A, N.ndarray) else A.toarray()
                    Jac[self._f_nbr:,
                        self._f_nbr:] = self._extra_equations.jac(y_extra)
            else:
                raise fmi.FMUException(
                    "No Jacobian provided for the extra equations")
        else:
            Jac = A

        return Jac
Exemple #5
0
    def solve(self):
        """
        Runs the simulation.
        """
        result_handler = self.result_handler
        h = (self.final_time-self.start_time)/self.ncp
        grid = N.linspace(self.start_time,self.final_time,self.ncp+1)[:-1]

        status = 0
        final_time = self.start_time

        #For result writing
        start_time_point = timer()
        result_handler.integration_point()
        self.timings["storing_result"] = timer() - start_time_point

        #Start of simulation, start the clock
        time_start = timer()

        for t in grid:
            status = self.model.do_step(t,h)
            self.status = status

            if status != 0:
                
                if status == fmi.FMI_ERROR:
                    result_handler.simulation_end()
                    raise fmi.FMUException("The simulation failed. See the log for more information. Return flag %d."%status)

                elif status == fmi.FMI_DISCARD and (isinstance(self.model, fmi.FMUModelCS1) or 
                                                    isinstance(self.model, fmi.FMUModelCS2)):
                
                    try:
                        if isinstance(self.model, fmi.FMUModelCS1):
                            last_time = self.model.get_real_status(fmi.FMI1_LAST_SUCCESSFUL_TIME)
                        else:
                            last_time = self.model.get_real_status(fmi.FMI2_LAST_SUCCESSFUL_TIME)
                        if last_time > t: #Solver succeeded in taken a step a little further than the last time
                            self.model.time = last_time
                            final_time = last_time
                            
                            start_time_point = timer()
                            result_handler.integration_point()
                            self.timings["storing_result"] += timer() - start_time_point
                    except fmi.FMUException:
                        pass
                break
                #result_handler.simulation_end()
                #raise Exception("The simulation failed. See the log for more information. Return flag %d"%status)
            
            final_time = t+h
            
            start_time_point = timer()
            result_handler.integration_point()
            self.timings["storing_result"] += timer() - start_time_point
            
            if self.options["time_limit"] and (timer() - time_start) > self.options["time_limit"]:
                raise fmi.TimeLimitExceeded("The time limit was exceeded at integration time %.8E."%final_time)    

            if self.input_traj != None:
                self.model.set(self.input_traj[0], self.input_traj[1].eval(t+h)[0,:])

        #End of simulation, stop the clock
        time_stop = timer()

        result_handler.simulation_end()
        
        if self.status != 0:
            print('Simulation terminated prematurely. See the log for possibly more information. Return flag %d.'%status)
        
        #Log elapsed time
        print('Simulation interval    : ' + str(self.start_time) + ' - ' + str(final_time) + ' seconds.')
        print('Elapsed simulation time: ' + str(time_stop-time_start) + ' seconds.')
        
        self.timings["computing_solution"] = time_stop - time_start - self.timings["storing_result"]
Exemple #6
0
    def __init__(self,
                 start_time,
                 final_time,
                 input,
                 model,
                 options):
        """
        Simulation algortihm for FMUs (Co-simulation).

        Parameters::

            model --
                fmi.FMUModelCS1 object representation of the model.

            options --
                The options that should be used in the algorithm. For details on
                the options, see:

                * model.simulate_options('FMICSAlgOptions')

                or look at the docstring with help:

                * help(pyfmi.fmi_algorithm_drivers.FMICSAlgOptions)

                Valid values are:
                - A dict that overrides some or all of the default values
                  provided by FMICSAlgOptions. An empty dict will thus
                  give all options with default values.
                - FMICSAlgOptions object.
        """
        self.model = model
        self.timings = {}
        self.time_start_total = timer()

        # set start time, final time and input trajectory
        self.start_time = start_time
        self.final_time = final_time
        self.input = input
        
        self.status = 0

        # handle options argument
        if isinstance(options, dict) and not \
            isinstance(options, FMICSAlgOptions):
            # user has passed dict with options or empty dict = default
            self.options = FMICSAlgOptions(options)
        elif isinstance(options, FMICSAlgOptions):
            # user has passed FMICSAlgOptions instance
            self.options = options
        else:
            raise InvalidAlgorithmOptionException(options)

        # set options
        self._set_options()

        input_traj = None
        if self.input:
            if hasattr(self.input[1],"__call__"):
                input_traj=(self.input[0],
                        TrajectoryUserFunction(self.input[1]))
            else:
                input_traj=(self.input[0],
                        TrajectoryLinearInterpolation(self.input[1][:,0],
                                                      self.input[1][:,1:]))
            #Sets the inputs, if any
            self.model.set(input_traj[0], input_traj[1].eval(self.start_time)[0,:])
        self.input_traj = input_traj
        
        #time_start = timer()

        if self.options["result_handling"] == "file":
            self.result_handler = ResultHandlerFile(self.model)
        elif self.options["result_handling"] == "binary":
            self.result_handler = ResultHandlerBinaryFile(self.model)
        elif self.options["result_handling"] == "memory":
            self.result_handler = ResultHandlerMemory(self.model)
        elif self.options["result_handling"] == "csv":
            self.result_handler = ResultHandlerCSV(self.model, delimiter=",")
        elif self.options["result_handling"] == "custom":
            self.result_handler = self.options["result_handler"]
            if self.result_handler is None:
                raise fmi.FMUException("The result handler needs to be specified when using a custom result handling.")
            if not isinstance(self.result_handler, ResultHandler):
                raise fmi.FMUException("The result handler needs to be a subclass of ResultHandler.")
        elif self.options["result_handling"] == "none": #No result handling (for performance)
            self.result_handler = ResultHandlerDummy(self.model)
        else:
            raise fmi.FMUException("Unknown option to result_handling.")

        self.result_handler.set_options(self.options)
        
        time_end = timer()
        #self.timings["creating_result_object"] = time_end - time_start
        time_start = time_end
        time_res_init = 0.0

        # Initialize?
        if self.options['initialize']:
            if isinstance(self.model, fmi.FMUModelCS1) or isinstance(self.model, fmi_extended.FMUModelME1Extended):
                self.model.initialize(start_time, final_time, stop_time_defined=self.options["stop_time_defined"])

            elif isinstance(self.model, fmi.FMUModelCS2):
                self.model.setup_experiment(start_time=start_time, stop_time_defined=self.options["stop_time_defined"], stop_time=final_time)
                self.model.initialize()
                
            else:
                raise fmi.FMUException("Unknown model.")
            
            time_res_init = timer()
            self.result_handler.initialize_complete()
            time_res_init = timer() - time_res_init
            
        elif self.model.time is None and isinstance(self.model, fmi.FMUModelCS2):
            raise fmi.FMUException("Setup Experiment has not been called, this has to be called prior to the initialization call.")
        elif self.model.time is None:
            raise fmi.FMUException("The model need to be initialized prior to calling the simulate method if the option 'initialize' is set to False")
        
        if abs(start_time - model.time) > 1e-14:
            logging.warning('The simulation start time (%f) and the current time in the model (%f) is different. Is the simulation start time correctly set?'%(start_time, model.time))
        
        time_end = timer()
        self.timings["initializing_fmu"] = time_end - time_start - time_res_init
        time_start = time_end
        
        self.result_handler.simulation_start()
        
        self.timings["initializing_result"] = timer() - time_start - time_res_init
Exemple #7
0
    def __init__(self,
                 start_time,
                 final_time,
                 input,
                 model,
                 options):
        """
        Create a simulation algorithm using Assimulo.

        Parameters::

            model --
                fmi.FMUModel object representation of the model.

            options --
                The options that should be used in the algorithm. For details on
                the options, see:

                * model.simulate_options('AssimuloFMIAlgOptions')

                or look at the docstring with help:

                * help(pyfmi.fmi_algorithm_drivers.AssimuloFMIAlgOptions)

                Valid values are:
                - A dict that overrides some or all of the default values
                  provided by AssimuloFMIAlgOptions. An empty dict will thus
                  give all options with default values.
                - AssimuloFMIAlgOptions object.
        """
        self.model = model
        self.timings = {}
        self.time_start_total = timer()
        
        try:
            import assimulo
        except:
            raise fmi.FMUException(
                'Could not find Assimulo package. Check pyfmi.check_packages()')
                
        # import Assimulo dependent classes
        from pyfmi.simulation.assimulo_interface import FMIODE, FMIODESENS, FMIODE2, FMIODESENS2

        # set start time, final time and input trajectory
        self.start_time = start_time
        self.final_time = final_time
        self.input = input

        # handle options argument
        if isinstance(options, dict) and not \
            isinstance(options, AssimuloFMIAlgOptions):
            # user has passed dict with options or empty dict = default
            self.options = AssimuloFMIAlgOptions(options)
        elif isinstance(options, AssimuloFMIAlgOptions):
            # user has passed AssimuloFMIAlgOptions instance
            self.options = options
        else:
            raise InvalidAlgorithmOptionException(options)

        # set options
        self._set_options()
        
        #time_start = timer()

        input_traj = None
        if self.input:
            if hasattr(self.input[1],"__call__"):
                input_traj=(self.input[0],
                        TrajectoryUserFunction(self.input[1]))
            else:
                input_traj=(self.input[0],
                        TrajectoryLinearInterpolation(self.input[1][:,0],
                                                      self.input[1][:,1:]))
            #Sets the inputs, if any
            input_names  = [input_traj[0]] if isinstance(input_traj[0],str) else input_traj[0]
            input_values = input_traj[1].eval(self.start_time)[0,:]
            
            if len(input_names) != len(input_values):
                raise fmi.FMUException("The number of input variables is not equal to the number of input values, please verify the input object.")
            
            self.model.set(input_names, input_values)

        if self.options["result_handling"] == "file":
            self.result_handler = ResultHandlerFile(self.model)
        elif self.options["result_handling"] == "binary":
            if self.options["sensitivities"]:
                logging.warning('The binary result file do not currently support storing of sensitivity results. Switching to textual result format.')
                self.result_handler = ResultHandlerFile(self.model)
            else:
                self.result_handler = ResultHandlerBinaryFile(self.model)
        elif self.options["result_handling"] == "memory":
            self.result_handler = ResultHandlerMemory(self.model)
        elif self.options["result_handling"] == "csv":
            self.result_handler = ResultHandlerCSV(self.model, delimiter=",")
        elif self.options["result_handling"] == "custom":
            self.result_handler = self.options["result_handler"]
            if self.result_handler is None:
                raise fmi.FMUException("The result handler needs to be specified when using a custom result handling.")
            if not isinstance(self.result_handler, ResultHandler):
                raise fmi.FMUException("The result handler needs to be a subclass of ResultHandler.")
        elif self.options["result_handling"] == "none": #No result handling (for performance)
            self.result_handler = ResultHandlerDummy(self.model)
        else:
            raise fmi.FMUException("Unknown option to result_handling.")

        self.result_handler.set_options(self.options)
        
        time_end = timer()
        #self.timings["creating_result_object"] = time_end - time_start
        time_start = time_end
        time_res_init = 0.0

        # Initialize?
        if self.options['initialize']:
            try:
                rtol = self.solver_options['rtol']
            except KeyError:
                rtol, atol = self.model.get_tolerances()
                
            if isinstance(self.model, fmi.FMUModelME1):
                self.model.time = start_time #Set start time before initialization
                self.model.initialize(tolerance=rtol)
                
            elif isinstance(self.model, fmi.FMUModelME2) or isinstance(self.model, fmi_coupled.CoupledFMUModelME2):
                self.model.setup_experiment(tolerance=rtol, start_time=self.start_time, stop_time=self.final_time)
                self.model.initialize()
                self.model.event_update()
                self.model.enter_continuous_time_mode()
            else:
                raise fmi.FMUException("Unknown model.")

            time_res_init = timer()
            self.result_handler.initialize_complete()
            time_res_init = timer() - time_res_init
        
        elif self.model.time is None and isinstance(self.model, fmi.FMUModelME2):
            raise fmi.FMUException("Setup Experiment has not been called, this has to be called prior to the initialization call.")
        elif self.model.time is None:
            raise fmi.FMUException("The model need to be initialized prior to calling the simulate method if the option 'initialize' is set to False")
        
        #See if there is an time event at start time
        if isinstance(self.model, fmi.FMUModelME1):
            event_info = self.model.get_event_info()
            if event_info.upcomingTimeEvent and event_info.nextEventTime == model.time:
                self.model.event_update()
        
        if abs(start_time - model.time) > 1e-14:
            logging.warning('The simulation start time (%f) and the current time in the model (%f) is different. Is the simulation start time correctly set?'%(start_time, model.time))
        
        time_end = timer()
        self.timings["initializing_fmu"] = time_end - time_start - time_res_init
        time_start = time_end
        
        self.result_handler.simulation_start()
        
        self.timings["initializing_result"] = timer() - time_start + time_res_init
            
        # Sensitivities?
        if self.options["sensitivities"]:
            if self.model.get_generation_tool() != "JModelica.org" and \
               self.model.get_generation_tool() != "Optimica Compiler Toolkit":
                if isinstance(self.model, fmi.FMUModelME2):
                    for var in self.options["sensitivities"]:
                        causality = self.model.get_variable_causality(var)
                        if causality != fmi.FMI2_INPUT:
                            raise fmi.FMUException("The sensitivity parameter is not specified as an input which is required.")
                else:
                    raise fmi.FMUException("Sensitivity calculations only possible with JModelica.org generated FMUs")
                
            if self.options["solver"] != "CVode":
                raise fmi.FMUException("Sensitivity simulations currently only supported using the solver CVode.")

            #Checks to see if all the sensitivities are inside the model
            #else there will be an exception
            self.model.get(self.options["sensitivities"])

        if not self.input and (isinstance(self.model, fmi.FMUModelME2) or isinstance(self.model, fmi_coupled.CoupledFMUModelME2)):
            if self.options["sensitivities"]:
                self.probl = FMIODESENS2(self.model, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time, parameters=self.options["sensitivities"],logging=self.options["logging"], result_handler=self.result_handler)
            else:
                self.probl = FMIODE2(self.model, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time,logging=self.options["logging"], result_handler=self.result_handler,extra_equations=self.options["extra_equations"])
        elif isinstance(self.model, fmi.FMUModelME2) or isinstance(self.model, fmi_coupled.CoupledFMUModelME2):
            if self.options["sensitivities"]:
                self.probl = FMIODESENS2(
                self.model, input_traj, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time,parameters=self.options["sensitivities"],logging=self.options["logging"], result_handler=self.result_handler)
            else:
                self.probl = FMIODE2(
                self.model, input_traj, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time,logging=self.options["logging"], result_handler=self.result_handler, extra_equations=self.options["extra_equations"])

        elif not self.input:
            if self.options["sensitivities"]:
                self.probl = FMIODESENS(self.model, result_file_name=self.result_file_name,with_jacobian=self.with_jacobian,start_time=self.start_time,parameters=self.options["sensitivities"],logging=self.options["logging"], result_handler=self.result_handler)
            else:
                self.probl = FMIODE(self.model, result_file_name=self.result_file_name,with_jacobian=self.with_jacobian,start_time=self.start_time,logging=self.options["logging"], result_handler=self.result_handler)
        else:
            if self.options["sensitivities"]:
                self.probl = FMIODESENS(
                self.model, input_traj, result_file_name=self.result_file_name,with_jacobian=self.with_jacobian,start_time=self.start_time,parameters=self.options["sensitivities"],logging=self.options["logging"], result_handler=self.result_handler)
            else:
                self.probl = FMIODE(
                self.model, input_traj, result_file_name=self.result_file_name,with_jacobian=self.with_jacobian,start_time=self.start_time,logging=self.options["logging"], result_handler=self.result_handler)

        # instantiate solver and set options
        self.simulator = self.solver(self.probl)
        self._set_solver_options()