class FeResult(object): """Finite Element Results Database. This class can hold a collection of results from a Finite Element simulation. While the class was designed for the post-processing of Abaqus (tm) results, it can be used more generally to store results from any program performing simulations over a mesh. pyFormex comes with an included program `postabq` that scans an Abaqus .fil output file and translates it into a pyFormex script. Use it as follows:: postabq job.fil > job.py Then execute the created script `job.py` from inside pyFormex. This will create an FeResult instance with all the recognized results. The structure of the FeResult class very closely follows that of the Abaqus results database. There are some attributes with general info and with the geometry (mesh) of the domain. The simulation results are divided in 'steps' and inside each step in 'increments'. Increments are usually connected to incremental time and so are often the steps, though it is up to the user to interprete the time. Steps could just as well be different unrelated simulations performed over the same geometry. In each step/increment result block, individual values can be accessed by result codes. The naming mostly follows the result codes in Abaqus, but components of vector/tensor values are number starting from 0, as in Python and pyFormex. Result codes: - `U`: displacement vector - `U0`, `U1`, `U2` : x, y, resp. z-component of displacement - `S`: stress tensor - `S0` .. `S5`: components of the (symmetric) stress tensor: 0..2 : x, y, z normal stress 3..5 : xy, yz, zx shear stress """ _name_ = '__FePost__' re_Skey = re.compile("S[0-5]") re_Ukey = re.compile("U[0-2]") def __init__(self, name=_name_, datasize={'U': 3, 'S': 6, 'COORD': 3}): self.name = name self.datasize = datasize.copy() self.about = { 'creator': pf.Version(), 'created': pf.StartTime, } self.modeldone = False self.labels = {} self.nelems = 0 self.nnodes = 0 self.dofs = None self.displ = None self.nodid = None self.nodes = None self.elems = None self.nset = None self.nsetkey = None self.eset = None self.res = None self.hdr = None self.nodnr = 0 self.elnr = 0 def dataSize(self, key, data): if key in self.datasize: return self.datasize[key] else: return len(data) def Abqver(self, version): self.about.update({'abqver': version}) def Date(self, date, time): self.about.update({'abqdate': date, 'abqtime': time}) def Size(self, nelems, nnodes, length): self.nelems = nelems self.nnodes = nnodes self.length = length self.nodid = -ones((nnodes, ), dtype=int32) self.nodes = zeros((nnodes, 3), dtype=float32) self.elems = {} self.nset = {} self.eset = {} def Dofs(self, data): self.dofs = array(data) self.displ = self.dofs[self.dofs[:6] > 0] if self.displ.max() > 3: self.datasize['U'] = 6 def Heading(self, head): self.about.update({'heading': head}) def Node(self, nr, coords, normal=None): self.nodid[self.nodnr] = nr nn = len(coords) self.nodes[self.nodnr][:nn] = coords self.nodnr += 1 def Element(self, nr, typ, conn): if typ not in self.elems: self.elems[typ] = [] self.elems[typ].append(conn) def Nodeset(self, key, data): self.nsetkey = key self.nset[key] = asarray(data) def NodesetAdd(self, data): self.nset[self.nsetkey] = union1d(self.nset[self.nsetkey], asarray(data)) def Elemset(self, key, data): self.esetkey = key self.eset[key] = asarray(data) def ElemsetAdd(self, data): self.eset[self.esetkey] = union1d(self.eset[self.esetkey], asarray(data)) def Finalize(self): self.nid = inverseUniqueIndex(self.nodid) for k in self.elems.iterkeys(): v = asarray(self.elems[k]) self.elems[k] = asarray(self.nid[v]) self.modeldone = True # we use lists, to keep the cases in order self.res = OrderedDict() self.step = None self.inc = None def Increment(self, step, inc, **kargs): """Add a new step/increment to the database. This method can be used to add a new increment to an existing step, or to add a new step and set the initial increment, or to just select an existing step/inc combination. If the step/inc combination is new, a new empty result record is created. The result record of the specified step/inc becomes the current result. """ if not self.modeldone: self.Finalize() if step != self.step: if step not in self.res.keys(): self.res[step] = OrderedDict() self.step = step self.inc = None res = self.res[self.step] if inc != self.inc: if inc not in res.keys(): res[inc] = {} self.inc = inc self.R = self.res[self.step][self.inc] def EndIncrement(self): if not self.modeldone: self.Finalize() self.step = self.inc = -1 def Label(self, tag, value): self.labels[tag] = value def NodeOutput(self, key, nodid, data): if key not in self.R: self.R[key] = zeros((self.nnodes, self.dataSize(key, data)), dtype=float32) if key == 'U': self.R[key][nodid - 1][self.displ - 1] = data elif key == 'S': n1 = self.hdr['ndi'] n2 = self.hdr['nshr'] ind = arange(len(data)) ind[n1:] += (3 - n1) #print(ind) self.R[key][nodid - 1][ind] = data else: self.R[key][nodid - 1][:len(data)] = data def ElemHeader(self, **kargs): self.hdr = dict(**kargs) def ElemOutput(self, key, data): if self.hdr['loc'] == 'na': self.NodeOutput(key, self.hdr['i'], data) def Export(self): """Align on the last increment and export results""" try: self.step = self.res.keys()[-1] self.inc = self.res[self.step].keys()[-1] self.R = self.res[self.step][self.inc] except: self.step = None self.inc = None self.R = None export({self.name: self, self._name_: self}) print("Read %d nodes, %d elements" % (self.nnodes, self.nelems)) if self.res is None: print("No results") else: print("Steps: %s" % self.res.keys()) def do_nothing(*arg, **kargs): """A do nothing function to stand in for as yet undefined functions.""" pass TotalEnergies = do_nothing OutputRequest = do_nothing Coordinates = do_nothing Displacements = do_nothing Unknown = do_nothing def setStepInc(self, step, inc=1): """Set the database pointer to a given step,inc pair. This sets the step and inc attributes to the given values, and puts the corresponding results in the R attribute. If the step.inc pair does not exist, an empty results dict is set. """ try: self.step = step self.inc = inc self.R = self.res[self.step][self.inc] except: self.R = {} def getSteps(self): """Return all the step keys.""" return self.res.keys() def getIncs(self, step): """Return all the incs for given step.""" if step in self.res: return self.res[step].keys() def nextStep(self): """Skips to the start of the next step.""" if self.step < self.getSteps()[-1]: self.setStepInc(self.step + 1) def nextInc(self): """Skips to the next increment. The next increment is either the next increment of the current step, or the first increment of the next step. """ if self.inc < self.getIncs(self.step)[-1]: self.setStepInc(self.step, self.inc + 1) else: self.nextStep() def prevStep(self): """Skips to the start of the previous step.""" if self.step > 1: self.setStepInc(self.step - 1) def prevInc(self): """Skips to the previous increment. The previous increment is either the previous increment of the current step, or the last increment of the previous step. """ if self.inc > 1: self.setStepInc(self.step, self.inc - 1) else: if self.step > 1: step = self.step - 1 inc = self.getIncs(step)[-1] self.setStepInc(step, inc) def getres(self, key, domain='nodes'): """Return the results of the current step/inc for given key. The key may include a component to return only a single column of a multicolumn value. """ components = '012' if self.re_Skey.match(key): if self.datasize['S'] == 3: components = '013' else: components = '012345' elif self.re_Ukey.match(key): if self.datasize['U'] == 2: components = '01' else: components = '012' comp = components.find(key[-1]) if comp >= 0: key = key[:-1] if key in self.R: val = self.R[key] if comp in range(val.shape[1]): return val[:, comp] else: return val else: return None def printSteps(self): """Print the steps/increments/resultcodes for which we have results.""" if self.res is not None: for i, step in self.res.items(): for j, inc in step.items(): for k, v in inc.items(): if isinstance(v, ndarray): data = "%s %s" % (v.dtype.kind, str(v.shape)) else: data = str(v) print("Step %s, Inc %s, Res %s (%s)" % (i, j, k, data))
def run(): global image, scaled_image, viewer flat() lights(False) transparent(False) view('front') # default image file filename = getcfg('datadir') + '/butterfly.png' image = None scaled_image = None w, h = 200, 200 # image viewer widget viewer = ImageView(filename) transforms = OrderedDict([ ('flat', lambda F: F), ('cylindrical', lambda F: F.cylindrical( [2, 0, 1], [2., 90. / float(nx), 1.]).rollAxes(-1)), ('spherical', lambda F: F.spherical(scale=[1., 90. / float(nx), 2.]).rollAxes(-1)), ('projected_on_cylinder', lambda F: F.projectOnCylinder(2 * R, 1)), ]) res = askItems([ _I('filename', filename, text='Image file', itemtype='button', func=selectImage), viewer, # image previewing widget _I('nx', w, text='width'), _I('ny', h, text='height'), _I('transform', itemtype='vradio', choices=transforms.keys()), ]) if not res: return globals().update(res) if image is None: print("Loading image") loadImage(filename) if image is None: return # Create the colors sz = image.size() print("Image size is (%s,%s)" % (sz.width(), sz.height())) color, colortable = qimage2glcolor(image.scaled(nx, ny)) print("Converting image to color array") # Create a 2D grid of nx*ny elements print("Creating grid") R = float(nx) / pi L = float(ny) F = Formex('4:0123').replic2(nx, ny).centered() F = F.translate(2, R) # Transform grid and draw def drawTransform(transform): print("Transforming grid") trf = transforms[transform] G = trf(F) clear() print("Drawing Colored grid") draw(G, color=color, colormap=colortable) drawText('Created with pyFormex', (20, 20), size=24) drawTransform(transform) zoomAll()
_I('nmod', 100, text='Number of cells along spiral'), _I('turns', 2.5, text='Number of 360 degree turns'), _I('rfunc', None, text='Spiral function', choices=rfuncs), _I('coeffs', (1., 0.5, 0.2), text='Coefficients in the spiral function'), _I('spiral3d', 0.0, text='Out of plane factor'), _I('spread', False, text='Spread points evenly along spiral'), _I('nwires', 1, text='Number of spirals'), _G('sweep', text='Sweep Data', checked=True, items=[ _I('cross_section', 'cross', 'select', text='Shape of cross section', choices=cross_sections.keys()), _I('cross_rotate', 0., text='Cross section rotation angle before sweeping'), _I('cross_upvector', '2', text='Cross section vector that keeps its orientation'), _I('cross_scale', 0., text='Cross section scaling factor'), ]), _I('flyalong', False, text='Fly along the spiral'), ] def spiral(X, dir=[0, 1, 2], rfunc=lambda x: 1, zfunc=lambda x: 0): """Perform a spiral transformation on a coordinate array""" theta = X[..., dir[0]]