Exemple #1
0
 def __init__(self, acq, shot, config_name=None, **kwargs):
     self.shot = shot
     self.acq = acq
     if config_name != None:
         self.__dict__.update(get_config_as_dict('Diagnostic', config_name))
         if pyfusion.VERBOSE>3: print(get_config_as_dict('Diagnostic', config_name))
     self.__dict__.update(kwargs)
     self.config_name=config_name
Exemple #2
0
 def __init__(self, acq, shot, config_name=None, **kwargs):
     self.shot = shot
     self.acq = acq
     if config_name != None:
         self.__dict__.update(get_config_as_dict('Diagnostic', config_name))
         if pyfusion.VERBOSE > 3:
             print(get_config_as_dict('Diagnostic', config_name))
     self.__dict__.update(kwargs)
     self.config_name = config_name
Exemple #3
0
def get_coords_for_channel(channel_name=None, **kwargs):
    config_dict = kwargs.copy()
    if channel_name:
        config_dict.update(get_config_as_dict('Diagnostic', channel_name))
    coord_name = 'dummy'
    coord_values = (0.0,0.0,0.0)
    transforms = []
    for k in config_dict.keys():
        if k.startswith('coords_'):
            coord_name = k[7:]
            coord_values = tuple(map(float,config_dict[k].split(',')))
    coords_instance = Coords(coord_name, coord_values)
    if 'coord_transform' in config_dict:
        transform_list = pyfusion.config.pf_options('CoordTransform', config_dict['coord_transform'])
        for transform_name in transform_list:
            # this seems to return all the globals too
            transform_class_str = pyfusion.config.pf_get('CoordTransform', config_dict['coord_transform'], transform_name)
            # so tyr to exclude the globals
            if pyfusion.config.has_option('global',transform_name):
                continue
            transform_class = import_from_str(transform_class_str)
            #if not hasattr(transform_class, 'output_coord'):
            #    raise Exception('??')
            coords_instance.load_transform(transform_class)
    debug_(pyfusion.DEBUG,1, key=['coord', 'device_name'])        
    return coords_instance
Exemple #4
0
def get_coords_for_channel(channel_name=None, **kwargs):
    config_dict = kwargs.copy()
    if channel_name:
        config_dict.update(get_config_as_dict("Diagnostic", channel_name))
    coord_name = "dummy"
    coord_values = (0.0, 0.0, 0.0)
    transforms = []
    for k in config_dict.keys():
        if k.startswith("coords_"):
            coord_name = k[7:]
            coord_values = tuple(map(float, config_dict[k].split(",")))
    coords_instance = Coords(coord_name, coord_values)
    if "coord_transform" in config_dict:
        transform_list = pyfusion.config.pf_options("CoordTransform", config_dict["coord_transform"])
        for transform_name in transform_list:
            # this seems to return all the globals too
            transform_class_str = pyfusion.config.pf_get(
                "CoordTransform", config_dict["coord_transform"], transform_name
            )
            # so tyr to exclude the globals
            if pyfusion.config.has_option("global", transform_name):
                continue
            transform_class = import_from_str(transform_class_str)
            # if not hasattr(transform_class, 'output_coord'):
            #    raise Exception('??')
            coords_instance.load_transform(transform_class)
    debug_(pyfusion.DEBUG, 1, key=["coord", "device_name"])
    return coords_instance
Exemple #5
0
 def testAcqAttrsConfigKwargs(self):
     """Check that config, kwarg attributes are correctly attached to
     object.
     
     If config is supplied, load config before kwargs.
     """
     config_dict = get_config_as_dict('Acquisition', 'test_baseacq')
     test_acq = BaseAcquisition('test_baseacq', dummy_var_1 = 5)
     self.assertEqual(test_acq.dummy_var_1, 5)
Exemple #6
0
 def testAcqAttrsConfigKwargs(self):
     """Check that config, kwarg attributes are correctly attached to
     object.
     
     If config is supplied, load config before kwargs.
     """
     config_dict = get_config_as_dict('Acquisition', 'test_baseacq')
     test_acq = BaseAcquisition('test_baseacq', dummy_var_1=5)
     self.assertEqual(test_acq.dummy_var_1, 5)
Exemple #7
0
 def testAcqAttrsConfig(self):
     """Check that config, kwarg attributes are correctly attached to
     object.
     
     If config is supplied, load config before kwargs.
     """
     config_dict = get_config_as_dict('Acquisition', 'test_baseacq')
     test_acq = BaseAcquisition('test_baseacq')
     for config_arg in config_dict.keys():
         self.assertTrue(hasattr(test_acq, config_arg))
Exemple #8
0
 def testAcqAttrsConfig(self):
     """Check that config, kwarg attributes are correctly attached to
     object.
     
     If config is supplied, load config before kwargs.
     """
     config_dict = get_config_as_dict('Acquisition', 'test_baseacq')
     test_acq = BaseAcquisition('test_baseacq')
     for config_arg in config_dict.keys():
         self.assertTrue(hasattr(test_acq, config_arg))
Exemple #9
0
 def testEqualityConfigOrArgs(self):
     """Check that config  and kwarg instantiated Acquisition classes
     are same."""
     acq_from_config = BaseAcquisition('test_baseacq')
     # create a BaseAcquisition instance with keyword args
     config_dict = get_config_as_dict('Acquisition', 'test_baseacq')
     acq_from_kwargs = BaseAcquisition(**config_dict)
     # Acquistion   instantiated  only   from  keywords   won't  have
     # config_name set but should otherwise be equal
     self.assertTrue(
         equal_except_for(acq_from_config, acq_from_kwargs, 'config_name'))
Exemple #10
0
 def testEqualityConfigOrArgs(self):
     """Check that config  and kwarg instantiated Acquisition classes
     are same."""
     acq_from_config = BaseAcquisition('test_baseacq')
     # create a BaseAcquisition instance with keyword args
     config_dict = get_config_as_dict('Acquisition', 'test_baseacq')
     acq_from_kwargs = BaseAcquisition(**config_dict)
     # Acquistion   instantiated  only   from  keywords   won't  have
     # config_name set but should otherwise be equal
     self.assertTrue(equal_except_for(acq_from_config,
                                      acq_from_kwargs, 'config_name'))
Exemple #11
0
    def __init__(self, acq, shot, config_name=None, **kwargs):
        self.shot = shot
        self.acq = acq
        self.no_cache = False  # this allows getData to request that cached data is NOT used - eg for saving local
        #bdb?? add device name here, so can prepend to Diagnostic
        # e.g. LHD_Diagnostic - avoids ambiguity
        debug_(pyfusion.DEBUG,5,key='device_name')
        if config_name is not None:
            self.__dict__.update(get_config_as_dict('Diagnostic', config_name))
            # look for the first valid date range for this diag - 
            #   see config/'Valid Dates' in the reference docs
            self.config_name=config_name
            for Mod in ['M1','M2','M3','M4']:
                if self.find_valid_for_date():
                    break
                else:
                    self.__dict__.update(get_config_as_dict('Diagnostic', config_name.replace('W7X','W7X'+Mod)))                  
                
            else:
                raise LookupError(config_name)
                    

            if pyfusion.VERBOSE>3: print(get_config_as_dict('Diagnostic', config_name))
        self.__dict__.update(kwargs)
Exemple #12
0
    def __init__(self, config_name, **kwargs):
        if pyfusion.config.pf_has_section('Device', config_name):
            self.__dict__.update(get_config_as_dict('Device', config_name))
        self.__dict__.update(kwargs)
        self.name = config_name

        #### attach acquisition
        if hasattr(self, 'acq_name'):
            acq_class_str = pyfusion.config.pf_get('Acquisition',
                                          self.acq_name, 'acq_class')
            self.acquisition = import_from_str(acq_class_str)(self.acq_name)
            # shortcut
            self.acq = self.acquisition
        else:
            pyfusion.logging.warning(
                "No acquisition class specified for device")
Exemple #13
0
def get_coords_for_channel(channel_name=None, **kwargs):
    config_dict = kwargs.copy()
    if channel_name:
        config_dict.update(get_config_as_dict('Diagnostic', channel_name))
    coord_name = 'dummy'
    coord_values = (0.0,0.0,0.0)
    transforms = []
    for k in config_dict.keys():
        if k.startswith('coords_'):
            coord_name = k[7:]
            coord_values = tuple(map(float,config_dict[k].split(',')))
    coords_instance = Coords(coord_name, coord_values)
    if config_dict.has_key('coord_transform'):
        transform_list = pyfusion.config.pf_options('CoordTransform', config_dict['coord_transform'])
        for transform_name in transform_list:
            transform_class_str = pyfusion.config.pf_get('CoordTransform', config_dict['coord_transform'], transform_name)
            transform_class = import_from_str(transform_class_str)
            coords_instance.load_transform(transform_class)

    return coords_instance
    def write_DA(self, filename):
        from pyfusion.data.DA_datamining import DA,  Masked_DA
        dd = {}
        res = np.array(self.fitdata, dtype=np.float32)
        nt = len(res)
        nc = len(res[0])
        for key in ['date', 'progId', 'shot']:
            dd[key] = np.zeros(nt, dtype=np.int64)
            
        dd['date'][:] = self.shot[0]
        dd['progId'][:] = self.shot[1]
        dd['shot'][:] = self.shot[1] + 1000*self.shot[0]

        for key in ['nits','maxits']:
            dd[key] = np.zeros([nt,nc], dtype=np.uint16)

        # make all the f32 arrays - note - ne is just I0 for now - fixed below
        lookup = [(0, 't_mid'), (1, 'Te'), (2, 'Vf'), (3, 'I0'), 
                  (4, 'resid'), (5, 'nits'), (6, 'maxits'), (7, 'Ie_Ii'),
                  (3, 'ne18')]

        if self.fitter.fit_params.get('esterr',False):
            lookup.extend([(8, 'eTe'), (9, 'eVf'), (10, 'eI0') ])

        for (ind, key) in lookup:
            if key not in dd:
                dd[key] = np.zeros([nt, nc], dtype=np.float32)
            dd[key][:] = res[:, :, ind]

        # fudge t_mid is not a vector...should fix properly
        dd['t_mid'] = dd['t_mid'][:, 0]
        dd['info'] = dict(params=self.actual_params,
                          coords=[self.coords[ic] for ic in self.select],
                          #area=[self.area[ic] for ic in self.select], # needs to be in npz file etc first
                          shotdata=dict(shot=[self.shot], utc_ns=[self.imeas.utc[0]]),
                          channels=[chn.replace(self.dev.name+'_', '')
                                    .replace('_I', '')
                                    for chn in
                                    [self.i_chans[ic] for ic in self.select]],
                          orig_name = os.path.split(filename)[-1],
                          username = os.getlogin())
        
        da = DA(dd)
        da.masked = Masked_DA(['Te', 'I0', 'Vf', 'ne18', 'Ie_Ii'], baseDA=da)
        #  da.da['mask']=(da['resid']/abs(da['I0']) < .7) & (da['nits']<100)
        #  da.da['mask'] = ((da['resid']/abs(da['I0']) < .7) & (da['nits'] < da['maxits'])
        # from version 0.7.0 onwards, resid is already normed to I0
        lpf = self.fitter.actual_fparams['lpf']
        # Note: these multilines ('down to here') can be applied to a DA by 
        #       pasting to reset mask AFTER uncommenting the following # line
        # lpf = da['info']['params']['actual_fit_params']['lpf']
        rthr = 0.7  # LP20160309_29_L53__amoebaNone1.2N_2k.npz is < .12  others 
                    # None 0310_9 up to 0.7-0.8
        if lpf is not None:
            rthr = rthr * np.sqrt(lpf/100.0)
        da.da['mask'] = ((da['resid'] < rthr) & (da['nits'] < da['maxits'])
                         & (np.abs(da['Vf']) < 200) & (np.abs(da['Te']) < 200) 
                         & (da['I0']>0.0004))
        # additional restriction applied if the error estimate is available
        if 'eTe' in da.da:  # want error not too big and smaller than temp
            da.da['mask'] &= ((np.abs(da['eTe']) < 100)
                              & (np.abs(da['eTe']) < np.abs(da['Te'])))
        #   down to here
        qe = 1.602e-19
        mp = 1.67e-27
        fact = 1/(0.6*qe)*np.sqrt(self.amu*mp/(qe))/1e18         # units of 1e18
        # check if each channel has an area

        for (c, chn) in enumerate([self.i_chans[ic] for ic in self.select]):
            cd = get_config_as_dict('Diagnostic', chn)
            A = cd.get('area', None)
            if A is None:
                A = 1.0e-6
                pyfusion.logging.warn('Defaulting area for {chn} to {A}'.format(chn=chn, A=A))
            A = float(A)
            da.da['ne18'][:, c] = fact/A * da['I0'][:, c]/np.sqrt(da['Te'][:, c])
        da.save(filename)
Exemple #15
0
 def __init__(self, config_name=None, **kwargs):
     if config_name != None:
         self.__dict__.update(get_config_as_dict('Acquisition',
                                                 config_name))
     self.__dict__.update(kwargs)
Exemple #16
0
 def __init__(self, acq, shot, config_name=None, **kwargs):
     self.shot = shot
     self.acq = acq
     if config_name != None:
         self.__dict__.update(get_config_as_dict('Diagnostic', config_name))
     self.__dict__.update(kwargs)
Exemple #17
0
import pyfusion as pf

pf.config.get('global','database')  #  'sqlite:///sqlite.txt'
pf.read_config('shaun_feb_2010.cfg')

from pyfusion.conf.utils import get_config_as_dict
get_config_as_dict('Device','H1')

get_config_as_dict('Diagnostic','H1PoloidalAll')


import pyfusion as pf
h1=pf.getDevice("H1")
data=h1.acq.getdata(70071,'H1ToroidalAxial')
data.meta.keys()
data.plot_signals()

# overlay fs on spectrum
run examples/plot_specgram.py dev_name='LHD' shot_number=27233 hold=0 time_range=[.35,.5] NFFT=256 noverlap=220
run examples/plot_text_pyfusion.py filename='PF2_120229_MP_27233_27233_1_256.dat' hold=1 min_e=0.8 freq_scale=1e3
colorbar();xlim(0.35,.5);ylim(0,150000)

# mode identification overlaid on spectrum - used in LHD report Feb 2012
run examples/plot_specgram.py dev_name='LHD' shot_number=27233 hold=0 time_range=[.35,1.5] NFFT=256 noverlap=220 
clim(-210,-40)
run examples/mode_identify_example_2012.py hold=1 fsfile='PF2_120229_MP_27233_27233_1_256.dat'
xlim(0.35,.5);ylim(0,150000)
xlabel('Time (s)'); ylabel('Frequency (kHz)')

# chirp following example
run examples/plot_text_pyfusion.py filename='PF2_120229_MP_27233_27233_1_256.dat' hold=1 min_e=0.8 freq_scale=1e3 plot=1 time_range=[0.35,.4]
    def process_swept_Langmuir(self, t_range=None, t_comp=[0, 0.1], fit_params = dict(maxits=200, alg='leastsq',esterr=1), initial_TeVfI0=dict(Te=50, Vf=15, I0=None), dtseg=4e-3, overlap=1, rest_swp='auto', clipfact=5, clip_iprobe = None, leakage=None, threshold=0.01, threshchan=12, filename=None, amu=1, plot=None, return_data=False, suffix=''):
        """ 
        ==> results[time,probe,quantity]
        plot = 1   : V-I and data if there are not too many.
        plot >= 2  : V-I curves
        plot >= 3  : ditto + time plot
        plot >= 4  : ditto + all I-V iterations

        can send parameters through the init or process - either way
         they all are recorded in actual_params

        clip_iprobe = [-0.015, .02]  # used to check if a resistive term is affecting Te


        Start by processing in the ideal order: - logical, but processes more data than necessary
        fix up the voltage sweep
        compensate I
        detect plasma
        reduce time
        segment and process

        Faster order - reduces time range earlier: (maybe implement later)
        detect plasma time range with quick and dirty method
        restrict time range, but keep pre-shot data accessible for evaluation of success of removal
        """
        self.figs = []  # reset the count of figures used to stop too many plots
        self.actual_params = locals().copy()
        # try to catch mispelling, variables in the wrong place
        for k in fit_params:
            if k not in 'Lnorm,cov,esterr,alg,xtol,ftol,lpf,maxits,track_ratio'.split(','):
                raise ValueError('Unknown fit_params key ' + k)
        self.actual_params.pop('self')
        self.actual_params.update(dict(i_diag=self.i_diag, v_diag=self.v_diag))
        # and do it for actuals too
        for k in self.actual_params:
            if k not in 'amu,clipfact,clip_iprobe,dtseg,filename,initial_TeVfI0,leakage,overlap,plot,rest_swp,suffix,t_comp,t_range,threshold,threshchan,fit_params,v_diag,i_diag,return_data'.split(','):
                raise ValueError('Unknown actual_params key ' + k)

        self.actual_params.update(dict(i_diag_utc=self.imeasfull.utc, pyfusion_version=pyfusion.VERSION))
        self.amu = amu
        if not isinstance(self.imeasfull.channels, (list, tuple, np.ndarray)):
            self.imeasfull.channels = [self.imeasfull.channels]

        self.i_chans = [ch.config_name for ch in self.imeasfull.channels]
        for ch in self.i_chans:  # only take the current channels, not U
            if ch[-1] != 'I':
                raise ValueError("Warning - removal of V chans doesn't work!!!")
                # hopefully we can ignore _U channels eventually, but not yet
                self.i_chans.remove(ch)

        self.coords = [ch.coords.w7_x_koord for ch in self.imeasfull.channels]
        # if you want just one voltage channel, at the moment, you still
        # need it to be a multi-channel diag. (to simplify this code).
        self.v_chans = [ch.config_name for ch in self.vmeasfull.channels]

        # want to say self.vmeas[ch].signal where ch is the imeas channel name
        self.vlookup = {}
        for (c, vch) in  enumerate(self.v_chans):
            self.vlookup[vch] = c

        self.vassoc = []  # list of sweepVs associated with each i channel
                          # one per i channel - these refer to their 
                          # respective self.v_chans
                          # for OP1.1, only a few V chans were recorded and 
                          # in practice only two channels are necessary.  
        default_sweep = 'NO SWEEP'
        default_sweep = 'W7X_L57_LP01_U'

        for ch in self.i_chans:
            cd = get_config_as_dict('Diagnostic', ch)
            # TODO(bdb): use of default_sweep should generate a warning
            self.vassoc.append(cd.get('sweepv', default_sweep))

        # first do the things that are better done on the whole data set.
        # prepare_sweeps will populate self.vcorrfull
        # self.check_crosstalk(verbose=0)  # this could be slow

        self.prepare_sweeps(rest_swp=rest_swp)
        self.get_iprobe(leakage=leakage, t_comp=t_comp)

        tb = self.iprobefull.timebase
        # the 3000 below tries to avoid glitches from Hilbert at both ends
        #w_plasma = np.where((np.abs(self.iprobefull.signal[threshchan]) > threshold) & (tb > tb[3000]) &(tb < tb[-3000]))[0]
        # only look at electron current - bigger (shot 0309.52 LP53 has a positive spike at 2s)
        w_plasma = np.where((-self.iprobefull.signal[threshchan] > threshold) & (tb > tb[3000]) &(tb < tb[-3000]))[0]
        
        if t_range is None:
            t_range = [tb[w_plasma[0]], tb[w_plasma[-1]]]

        self.t_range = t_range
        if t_range is not None:
            self.imeas = self.imeasfull.reduce_time(t_range)
            self.iprobe = self.iprobefull.reduce_time(t_range)
            self.vcorr = self.vcorrfull.reduce_time(t_range)
        else:
            self.imeas = self.imeasfull
            self.iprobe = self.iprobefull
            self.vcorr = self.vcorrfull

        # We need to segment iprobe, also i_meas to check clipping, and vsweep
        self.segs = zip(self.imeas.segment(dtseg, overlap),
                        self.iprobe.segment(dtseg, overlap),
                        self.vcorr.segment(dtseg, overlap))

        if self.debug>0: print(' {n} segments'.format(n=len(self.segs)))
        self.fitdata = []
        debug_(self.debug, 3, key='process_loop')
        for mseg, iseg, vseg in self.segs:
            # print('len vseg', len(vseg.signal[0]))
            if len(vseg.signal[0]) < dtseg//5:  # skip short segments
                continue

            print(np.round(np.mean(mseg.timebase),4), end='s: ')  # midpoint    
            if clip_iprobe is not None:
                print('fudge hard clipping')
                # have to clip the raw signal, because that is where the decision is made
                # but we have to do it AFTER isage is extracted, becuause the leakage
                # will make the clipping uneven (a sinusoidal top) - so clip isge too
                iseg.signal = np.clip(iseg.signal, *clip_iprobe)
                mseg.signal = iseg.signal.copy()

            self.fitdata.append(self.fit_swept_Langmuir_seg_multi(mseg, iseg, vseg, clipfact=clipfact, initial_TeVfI0=initial_TeVfI0, fit_params=fit_params, plot=plot))
        # note: fitter.actual_fparams only records the most recent!
        self.actual_params.pop('fit_params') # only want the ACTUAL ones.
        self.actual_params['actual_fit_params'] = self.fitter.actual_fparams
        if filename is not None:            
            if  '*' in filename:
                fmt = 'LP{s0}_{s1}_'
                if 'L5' in self.i_diag:
                    fmt += 'L5' + self.i_diag.split('L5')[1][0]
                filename = filename.replace('*',fmt+'_')
                if filename.endswith('_'):  # remove ending _
                    filename = filename[0:-1]
            if '{' in filename:
                filename = filename.format(s0=self.shot[0], s1=self.shot[1], i_diag=self.i_diag)
            print('writing {fn}'.format(fn=filename))
            # Lukas had trouble with this in python 3
            self.write_DA(filename)
            
        if return_data:
            return(self.fitdata)
Exemple #19
0
 def __init__(self, config_name=None, **kwargs):
     if config_name is not None:
         self.__dict__.update(get_config_as_dict('Acquisition', config_name))
     self.__dict__.update(kwargs)