trees['tpa'][-tn:] = fvs.arrays.prob[:tn] #trees['spp'][-tn:] = spp_codes[fvs.arrays.isp[:tn]] #print sum(trees[-tn:]['tpa']) - summary[run_id,cycle]['tpa'] print('{:>6s}{:>5s}{:>5s}{:>10s}'.format('year','stop','spp','tpa')) print('{:>6d}{:>5d}{:>5s}{:>10.3f}'.format(trees[-tn:]['year'][0],trees[-tn:]['stop'][0],trees[-tn:]['spp'][0],sum(trees[-tn:]['tpa']))) print('{:>6d}{:>5d}{:>5s}{:>10.3f}'.format(trees[-tn:]['year'][0],trees[-tn:]['stop'][0],trees[-tn:]['spp'][-1],trees[-tn:]['tpa'][-1])) # ntrees,ncycles,nplots,maxtrees,maxspecies,maxplots,maxcycles = fvs.fvsdimsizes() # attrs = numpy.zeros(ntrees) # fvs.fvstreeattr('tpa',3,'get',attrs) # # print sum(trees[-tn:]['tpa']) - summary[run_id,cycle]['tpa'], sum(attrs) - summary[run_id,cycle]['tpa'] #close all IO files fvs.filclose() # print summary[:,:6] # print summary[cnt,:] print 'Rep: %-4d' % x, ','.join('%6d' % v for v in summary[run_id,:]['tcuft']) # print 'BDFT',','.join('%6d' % v for v in summary[:,5]) # if plot: # pylab.plot(summary[:, 3]) run_id += 1 et = time.clock() #replace the overwritten tree data file shutil.copy2('pnt01.tre.save','pnt01.tre')
cycle_year = year_zero # Initialize the FVS run fvs.fvs_step.fvs_init(kwd) # loop through growth cycles, collecting summary and tree stats for cycle in range(1, num_cycles + 1): # call the FVS grower loop fvs.fvs_step.fvs_grow() cycle_year += cycle_len # close all IO files fvs.fvs_step.fvs_end() fvs.filclose() run_id += 1 # rep_trees.append( # fvs_tables.trees_to_dataframe( # fvs.tree_data, spp_codes, stand_id=0, run_id=x # , year_zero=year_zero, cycle_len=cycle_len # )) # # d = fvs.snag_data # open('snags.csv', 'w').close() # for cycle in range(num_cycles): # snags = pandas.DataFrame({ # 'cycle':cycle