Exemple #1
0
def conlanger_map():
    foo = dict([(country.iso.lower(), country.count) for country in country_most_common()])
    custom_style = Style(
        background='#fff',
        plot_background='#fff',
        foreground='#ffffff',
        foreground_light='#ffffff',
        foreground_dark='#ffffff',
        opacity='.6',
        opacity_hover='.9',
        transition='400ms ease-in',
        colors=('#527C3A', '#E8537A', '#E95355', '#E87653', '#E89B53')
    )

    chart = Worldmap(style=custom_style)
    chart.no_prefix = True
    chart.disable_xml_declaration = True
    chart.show_legend = False
    chart.add('Conlangers', foo)
    return chart.render()
Exemple #2
0
    cc_gdp = {}
    for gdp_dict in gdp_data:
        if gdp_dict['Year'] == '2010':
            country_name = gdp_dict['Country Name']
            gdp = int(float(gdp_dict['Value']))
            code = get_country_code(country_name)
            if code:
                cc_gdp[code] = gdp

# Group the countries into 3 gdp levels.
cc_gdp_1, cc_gdp_2, cc_gdp_3 = {}, {}, {}
for cc, gdp in cc_gdp.items():
    if gdp < 1000000000:
        cc_gdp_1[cc] = gdp
    elif gdp < 10000000000000:
        cc_gdp_2[cc] = gdp
    else:
        cc_gdp_3[cc] = gdp

# Plot and output to file
wm_style = RS('#336699', base_style=LCS)
wm = World(style=wm_style)
wm.force_uri_protocol = 'http'
wm.title = 'World GDP in 2010, by Country'

wm.add('0-1bn', cc_gdp_1)
wm.add('1bn-1tr', cc_gdp_2)
wm.add('>1tr', cc_gdp_3)

wm.render_to_file('world_gdp.svg')
# Open file and extract data
filename = "life_female.csv"

with open(filename) as f:
    lifedata = csv.reader(f)

    # Get to the proper column line on the csv
    for n in range(1, 6):
        next(lifedata)

    # Make a new dictionary. Translate the country names
    # to country_codes, and put them in as keys and the
    # life expectancy data as values (taken from the 2014 data set)
    lrates = {}
    for rowdata in list(lifedata):
        ccode = get_country_code(rowdata[0])
        try:
            lrates[ccode] = float(rowdata[58])
        except ValueError:
            continue

# Plot new graph and output to file
wm_style = RS('#336699', base_style=LCS)
wm = World(style=wm_style)
wm.force_uri_protocol = 'http'
wm.title = 'Female Life Expectancy in 2014, by Country'

wm.add('Years', lrates)

wm.render_to_file('female_mortality.svg')
filename = 'population_data.json'
with open(filename) as f:
    pop_data = json.load(f)

cc_populations = {}
for pop_dict in pop_data:
    if pop_dict['Year'] == '2010':
        country_name = pop_dict['Country Name']
        population = int(float(pop_dict['Value']))
        code = get_country_code(country_name)
        if code:
            cc_populations[code] = population

cc1, cc2, cc3 = {}, {}, {}
for cc, popu in cc_populations.items():
    if popu < 10000000:
        cc1[cc] = popu
    elif popu < 1000000000:
        cc2[cc] = popu
    else:
        cc3[cc] = popu

wm_style = RotateStyle('#336699', base_style=LightColorizedStyle)
wm = World(style=wm_style)
wm.title = 'Population in world'
wm.add('< 10m', cc1)
wm.add('10m - 1b', cc2)
wm.add('> 1b', cc3)
wm.render_to_file('world_populations_new.svg')
Exemple #5
0
from pygal.maps.world import World

wm = World()
wm.force_uri_protocol = 'http'
wm.title = 'Ameryka Północna, Środkowa i Południowa'

wm.add('Ameryka Północna', ['ca', 'mx', 'us'])
wm.add('Ameryka Środkowa', ['bz', 'cr', 'gt', 'hn', 'ni', 'pa', 'sv'])
wm.add(
    'Ameryka Południowa',
    ['ar', 'bo', 'br', 'cl', 'co', 'ec', 'gf', 'gy', 'pe', 'sr', 'uy', 've'])

wm.render_to_file('americas.svg')
for pop_dict in pop_data:
    if pop_dict['Year'] == '2010':
        country_name = pop_dict['Country Name']
        population = int(float(pop_dict['Value']))
        code = get_country_code(country_name)
        if code:
            cc_populations[code] = population

# Podzielenie państw na trzy grupy według liczebności populacji.
cc_pops_1, cc_pops_2, cc_pops_3 = {}, {}, {}
for cc, pop in cc_populations.items():
    if pop < 10000000:
        cc_pops_1[cc] = pop
    elif pop < 1000000000:
        cc_pops_2[cc] = pop
    else:
        cc_pops_3[cc] = pop

# Wyświetlenie liczby państw w każdej z trzech grup.        
print(len(cc_pops_1), len(cc_pops_2), len(cc_pops_3))

wm_style = RS('#336699', base_style=LCS)
wm = World(style=wm_style)
wm.force_uri_protocol = 'http'
wm.title = 'Populacja na świecie w 2010 roku (dane dla poszczególnych państw)'
wm.add('0 - 10 mln', cc_pops_1)
wm.add('10 mln - 1 mld', cc_pops_2)
wm.add('>1 mld', cc_pops_3)
    
wm.render_to_file('world_population.svg')
Exemple #7
0
from pygal.maps.world import World

wm = World()
wm.title = 'Populations of Countries in North America'
wm.add("North America", {"ca":3412600, 'us': 309349000, 'mx': 113423000})

wm.render_to_file("C:\\Users\\Asymmetry\\Desktop\\na_populations.svg")
Exemple #8
0
from pygal.maps.world import World

wm = World()
wm.force_uri_protocol = 'http'
wm.title = 'North, Central, and South America'

wm.add('North America', {'ca': 34126000, 'us': 309349000, 'mx': 113423000})
wm.add('Central America', ['bz', 'cr', 'gt', 'hn', 'ni', 'pa', 'sv'])
wm.add('South America', [
    'ar', 'bo', 'br', 'cl', 'co', 'ec', 'gf', 'gy', 'pe', 'py', 'sr', 'uy',
    've'
])

wm.render_to_file('americas.svg')
Exemple #9
0
import json
from country_codes import get_country_code
from pygal.maps.world import World
from pygal.style import RotateStyle

# Wczytanie danych i umieszczenie ich na liście.
filename = 'gdp_json.json'
with open(filename) as f:
    pop_data = json.load(f)

# Utworzenie słownika danych dotyczących populacji.
cc_populations = {}
for pop_dict in pop_data:
    if str(pop_dict['Year']) == '2010':
        country_name = pop_dict['Country Name']
        population = pop_dict['Value']
        code = get_country_code(country_name)
        if code:
            cc_populations[code] = float(population)

print(cc_populations)
wm_style = RotateStyle('#336699')
wm = World(style=wm_style)
wm.force_uri_protocol = 'http'
wm.value_formatter = lambda x: "%.2f" % x
wm.add('GDP', cc_populations)
wm.render_to_file('world_gdp.svg')
Exemple #10
0
            gdp = int(float(pop_dict['Value']))
            code = get_country_code(country)
            if code:
                cc_gdps[code] = gdp
            else:
                print('Error - ', country )

    # Group the countries into 3 gdp levels.
    #  Less than 5 billion, less than 50 billion, >= 50 billion.
    #  Also, convert to billions for displaying values.
    cc_gdps_1, cc_gdps_2, cc_gdps_3 = {}, {}, {}
    for cc, gdp in cc_gdps.items():
        if gdp < 5000000000:
            cc_gdps_1[cc] = round(gdp / 1000000000)
        elif gdp < 50000000000:
            cc_gdps_2[cc] = round(gdp / 1000000000)
        else:
            cc_gdps_3[cc] = round(gdp / 1000000000)

    # See how many countries are in each level.
    print(len(cc_gdps_1), len(cc_gdps_2), len(cc_gdps_3))

    wm_style = RS('#336699', base_style=LCS)
    wm = World(style=wm_style)
    wm.title = 'Global GDP in 2014, by Country (in billions USD)'
    wm.add('0-5bn', cc_gdps_1)
    wm.add('5bn-50bn', cc_gdps_2)
    wm.add('>50bn', cc_gdps_3)

    wm.render_to_file('global_gdp.svg')
Exemple #11
0
import pygal
from pygal.maps.world import World

wm = World()
wm.title = "North, Central and South America"

wm.add("North America", ['ca', 'mx', 'us'])
wm.add("Central America", ['bz', 'cr', 'gt', 'hn', 'ni', 'pa', 'sv'])
wm.add("South America", ['ar', 'bo', 'br', 'cl', 'co', 'ec', 'gf',f 'gy', 'pe', 'py', 'sr', 'uy', 've'])

wm.render_to_file('americas.svg')
Exemple #12
0
import pygal
import pygal_maps_world
#import base64
from pygal.maps.world import World
#from ipywidgets import HTML
from flask import Flask
from flask import request

print("1")
if request.method == 'POST':
    print("1")
    countryCode = request.form['code']
else:
    print('No country code entered!')

wm = World()
wm.force_uri_protocol = 'http'

wm.title = "Women Political leader distribution across countries"
wm.add('Leaders', {'ca': 4, 'mx': 1, 'us': 6})
#wm.chart.render()
wm.render_to_file('map.svg')
#b64 = base64.b64encode(wm.render())
#src = 'data:image/svg+xml;charset=utf-8;base64,'+b64
#HTML('<embed src={}></embed>'.format(src))
Exemple #13
0
from pygal.maps.world import World

wm = World()
wm.title = 'North, Central, South America and Ukraine'

wm.add('North America', ['ca', 'mx', 'us'])
wm.add('Central America', ['bz', 'cr', 'gt', 'hn', 'ni', 'pa', 'sv'])
wm.add('South America', [
    'ar', 'bo', 'br', 'cl', 'co', 'ec', 'gf', 'gy', 'pe', 'py', 'sr', 'uy',
    've'
])
wm.add('Ukraine', ['ua'])

wm.render_to_file('americas.svg')
Exemple #14
0
from pygal.maps.world import World

wm = World()
wm.title = 'North, Central and South America'

wm.add('North America', {'ca': 34126000, 'us': 309349000, 'mx': 113423000})
# wm.add('Central America', ['bz', 'cr', 'gt', 'hn', 'ni', 'pa', 'sv'])
# wm.add('South America', ['ar', 'bo', 'br', 'cl', 'co', 'ec', 'gf', 'gy', 'pe', 'py', 'sr', 'uy', 've'])
wm.render_to_file('svg/americas.svg')
from pygal.maps.world import World

wm = World()
wm.title = 'Population in North America'
wm.add('North America', {'ca': 34126000, 'us': 309349000, 'mx': 113423000})
wm.render_to_file('na_population.svg')
Exemple #16
0
from pygal.maps.world import World
wm = World()
wm.title = 'Populations of Countries in North America'
wm.add('North America', {'ca': 34126000, 'us': 309349000, 'mx': 113423000})
wm.render_to_file('na_populations.svg')
        country_name = pop_dict['Country Name']
        population = int(float(pop_dict['Value']))

        code = get_country_code(country_name)
        if code:
            cc_populations[code] = population

# Group the countries into 3 poplulation levels.

cc_pops_1, cc_pops_2, cc_pops_3 = {}, {}, {}
for cc, pop in cc_populations.items():
    if pop <10000000:
        cc_pops_1[cc] = pop
    elif pop < 1000000000:
        cc_pops_2[cc] = pop
    else:
        cc_pops_3[cc] = pop

# See how many countries are in each level.
print(len(cc_pops_1), len(cc_pops_2), len(cc_pops_3))

wm = World()
wm_style =RotateStyle('#336699')
wm = World(style=wm_style)
wm.title = 'World Population in 2010, by Country'
wm.add('0-10m', cc_pops_1)
wm.add('10m-1b', cc_pops_2)
wm.add('>1b', cc_pops_3)

wm.render_to_file('world_population.svg')
cc_population={}
for pop_dict in pop_date:#将每个字典存储在pop_dict中
    if pop_dict['Year']=='2010':                            #for循环是一次操作一个值
        country_name=pop_dict['Country Name']

        population=int(float(pop_dict['Value']))

        code=get_country_code(country_name)

        if code:

            cc_population[code]=population          #字典的赋值
        else:
            print("ERROR"+":"+country_name)
for cc,pop in cc_population.items():
    if pop<100000000:
        cc_pop1[cc]=pop
    elif pop<1000000000:
        cc_pop2[cc]=pop
    else:
        cc_pop3[cc]=pop


wm_style=RotateStyle('#336699',base_style=LightColorizedStyle)
wm=World(style=wm_style)
wm.title="World Population in 2010,by Country"
wm.add('0-10m',cc_pop1)
wm.add('10m-1bn',cc_pop2)
wm.add('>1bn',cc_pop3)

wm.render_to_file('word_population.svg')
Exemple #19
0
from pygal.maps.world import World

wm = World()
wm.force_uri_protocol = 'http'
wm.title = 'Populations of Countries in North America'
wm.add('North America', {'ca': 34126000, 'us': 309349000, 'mx': 113423000})

wm.render_to_file('na_populations.svg')
        country_name = pop_dict['Country Name']
        population = int(float(pop_dict['Value']))
        code = get_country_code(country_name)
        if code:
            cc_populations[code] = population
        else:
            print(country_name + " has no code.")

# Group the countries into 3 population levels: less than 10 million, less than 1 billion, and more than 1 billion

cc_pops_1, cc_pops_2, cc_pops_3 = {}, {}, {}

for country, pop in cc_populations.items():
    if pop < 10000000:
        cc_pops_1[country] = pop
    elif pop >= 10000000 and pop < 1000000000:
        cc_pops_2[country] = pop
    else:
        cc_pops_3[country] = pop

# See how many countries are in each level.
print(len(cc_pops_1), len(cc_pops_2), len(cc_pops_3))

wm_style = RotateStyle('#00008B')
wm = World(style=wm_style)
wm.title = 'World Population in 2010, by Country'
wm.add('0-10m', cc_pops_1)
wm.add('10m-1bn', cc_pops_2)
wm.add('>1bn', cc_pops_3)

wm.render_to_file('world_population.svg')
    # json.load() converts the data into a format Python can work with
    pop_data = json.load(f)

# build a dictionary of population data
cc_populations = {}
for pop_dict in pop_data:
    if pop_dict['Year'] == '2010':
        country_name = pop_dict['Country Name']
        population = int(float(pop_dict['Value']))
        code = get_country_code(country_name)
        if code:
            cc_populations[code] = population

# group the countries into 3 population levels
cc_pops_1, cc_pops_2, cc_pops_3 = {}, {}, {}
for cc, pop in cc_populations.items():
    if pop < 10000000:
        cc_pops_1[cc] = pop
    elif pop < 10000000:
        cc_pops_2[cc] = pop
    else:
        cc_pops_3[cc] = pop

wm = World()
wm.force_uri_protocol = 'http'
wm.title = 'World Population in 2010, by Country'
wm.add('0-10,', cc_pops_1)
wm.add('10m-1bn', cc_pops_2)
wm.add('>1bn', cc_pops_3)
wm.render_to_file('world_population.svg')
from pygal.maps.world import World

wm = World()
wm.force_uri_protocol = 'http'
wm.title = 'Wielkość populacji w krajach Ameryki Północnej'
wm.add('Ameryka Północna', {'ca': 34126000, 'us': 309349000, 'mx': 113423000})

wm.render_to_file('na_populations.svg')
Exemple #23
0
#
from pygal.maps.world import World

wm = World()
wm.title = 'North, Central, and South America'

wm.add('North America', ['ca', 'mx', 'us'])
wm.add('Central America', ['bz', 'cr', 'gt', 'hn', 'ni', 'pa', 'sv'])
wm.add('South America', ['ar', 'bo', 'br', 'cl', 'co', 'ec', 'gf', 'gy',
	'pe', 'py', 'sr', 'uy', 've'])
	
wm.render_to_file('americas.svg')
Exemple #24
0
from pygal.maps.world import World


wm = World()
wm.title = "North, Central, and South America"

wm.add("North America", ['ca', 'mx', 'us'])
wm.add('Central America', ['bz', 'cr', 'gt', 'hn', 'ni', 'pa', 'sv'])
wm.add("South America", ['ar', 'bo', 'br', 'cl', 'co', 'ec', 'gf', 'gy', 'pe', 'py', 'sr', 'uy', 've'])

wm.render_to_file('amrericas.svg')