Exemple #1
0
def chicago_tensor():
    """
    chicago tensor
    """
    X, y = chicago()
    gam = PoissonGAM(s(0, n_splines=200) + te(3, 1) + s(2)).fit(X, y)

    XX = gam.generate_X_grid(term=1, meshgrid=True)
    Z = gam.partial_dependence(term=1, meshgrid=True)

    fig = plt.figure()
    ax = plt.axes(projection='3d')
    ax.plot_surface(XX[0], XX[1], Z, cmap='viridis')
    fig.tight_layout()

    plt.savefig('imgs/pygam_chicago_tensor.png', dpi=300)
Exemple #2
0
############################################################
# https://pygam.readthedocs.io/en/latest/notebooks/tour_of_pygam.html

#Fitting and plotting interactions with te()

from pygam import PoissonGAM, s, te
from pygam.datasets import chicago

X, y = chicago(return_X_y=True)
X.shape

gam = PoissonGAM(s(0, n_splines=200) + te(3, 1) + s(2)).fit(X, y)

import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

plt.ion()
plt.rcParams['figure.figsize'] = (12, 8)

XX = gam.generate_X_grid(term=1, meshgrid=True)
Z = gam.partial_dependence(term=1, X=XX, meshgrid=True)

ax = plt.axes(projection='3d')
ax.plot_surface(XX[0], XX[1], Z, cmap='viridis')

#Simple interactions, copare with te()

from pygam import LinearGAM, s
from pygam.datasets import toy_interaction

X, y = toy_interaction(return_X_y=True)
Exemple #3
0
def chicago_X_y():
    # y is counts
    # recommend PoissonGAM
    return chicago(return_X_y=True)
Exemple #4
0
import missingno as msno
import seaborn as sns
import matplotlib.pyplot as plt
from pygam import datasets

df = datasets.chicago(return_X_y=False)
df.info()

msno.bar(df)
plt.show()  # 3 features with missing values

msno.matrix(df)
plt.show()  # 2 features have missing values that aren't distributed randomly. 1 feature has too many missing values to keep.

msno.heatmap(df)
plt.show() # low nullity correlation +1

# plot distribution of deaths

sns.distplot(df['death']) # roughly normal distribution
plt.show()