def destinationNed(self, delta):
        '''Calculate the destination point using the supplied NED delta
           from this point.

           @arg delta: Delta from this to the other point in the local
                       tangent plane (LTP) of this point (L{Ned}).

           @return: Destination point (L{Cartesian}).

           @raise TypeError: If B{C{delta}} is not L{Ned}.

           @example:

           >>> a = LatLon(49.66618, 3.45063)
           >>> delta = toNed(116807.681, 222.493, -0.5245)  # [N:-86126, E:-78900, D:1069]
           >>> b = a.destinationNed(delta)  # 48.88667°N, 002.37472°E

           @JSname: I{destinationPoint}.
        '''
        _xinstanceof(Ned, delta=delta)

        n, e, d = self._rotation3()
        # convert NED delta to standard coordinate frame of n-vector
        dn = delta.ned
        # rotate dn to get delta in cartesian (ECEF) coordinate
        # reference frame using the rotation matrix column vectors
        dc = Cartesian(fdot(dn, n.x, e.x, d.x),
                       fdot(dn, n.y, e.y, d.y),
                       fdot(dn, n.z, e.z, d.z))

        # apply (cartesian) delta to this Cartesian to
        # obtain destination point as cartesian
        v = self.toCartesian().plus(dc)  # the plus() gives a plain vector

        return v.toLatLon(datum=self.datum, LatLon=self.classof)  # Cartesian(v.x, v.y, v.z).toLatLon(...)
Exemple #2
0
    def rotate(self, axis, theta):
        '''Rotate this vector around an axis by a specified angle.

           See U{Rotation matrix from axis and angle
           <https://WikiPedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle>}
           and U{Quaternion-derived rotation matrix
           <https://WikiPedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix>}.

           @arg axis: The axis being rotated around (L{Vector3d}).
           @arg theta: The angle of rotation (C{radians}).

           @return: New, rotated vector (L{Vector3d}).

           @JSname: I{rotateAround}.
        '''
        a = self.others(axis=axis).unit()  # axis being rotated around

        c = cos(theta)
        b = a.times(1 - c)
        s = a.times(sin(theta))

        p = self.unit().xyz  # point being rotated

        # multiply p by a quaternion-derived rotation matrix
        return self.classof(fdot(p, a.x * b.x + c,   a.x * b.y - s.z, a.x * b.z + s.y),
                            fdot(p, a.y * b.x + s.z, a.y * b.y + c,   a.y * b.z - s.x),
                            fdot(p, a.z * b.x - s.y, a.z * b.y + s.x, a.z * b.z + c))
Exemple #3
0
def _M(Mabcd, a):
    '''(INTERNAL) Compute meridional arc.
    '''
    a_ = a - _A0
    _a = a + _A0
    return fdot(Mabcd, a_, -sin(a_) * cos(_a),
                sin(a_ * 2) * cos(_a * 2), -sin(a_ * 3) * cos(_a * 3))
Exemple #4
0
    def rotate(self, xyz, *xyz0):
        '''Forward rotation M{M0' ⋅ ([x, y, z] - [x0, y0, z0])'}.

           @param xyz: Local C{(x, y, z)} coordinates (C{3-tuple}).
           @param xyz0: Optional, local C{(x0, y0, z0)} origin (C{3-tuple}).

           @return: Rotated C{(x, y, z)} location (C{3-tuple}).
        '''
        if xyz0:  # and len(xyz) == len(xyz0)
            xyz = tuple(c - c0 for c, c0 in zip(xyz, xyz0))

        # x' = M[0] * x + M[3] * y + M[6] * z
        # y' = M[1] * x + M[4] * y + M[7] * z
        # z' = M[2] * x + M[5] * y + M[8] * z
        return (fdot(self[0::3], *xyz), fdot(self[1::3],
                                             *xyz), fdot(self[2::3], *xyz))
Exemple #5
0
def _rsT(T):
    '''(INTERNAL) Helper for C{_RD}, C{_RF} and C{_RJ}.
    '''
    s = map2(sqrt, T[1:])
    r = fdot(s[:3], s[1], s[2], s[0])
    T = tuple((t + r) * 0.25 for t in T)
    return r, s, T
Exemple #6
0
    def unrotate(self, xyz, *xyz0):
        '''Inverse rotation M{[x0, y0, z0] + M0 ⋅ [x,y,z]'}.

           @param xyz: Local C{(x, y, z)} coordinates (C{3-tuple}).
           @param xyz0: Optional, local C{(x0, y0, z0)} origin (C{3-tuple}).

           @return: Unrotated C{(x, y, z)} location (C{3-tuple}).
        '''
        # x' = x0 + M[0] * x + M[1] * y + M[2] * z
        # y' = y0 + M[3] * x + M[4] * y + M[5] * z
        # z' = z0 + M[6] * x + M[7] * y + M[8] * z
        xyz = (fdot(self[0:3], *xyz), fdot(self[3:6],
                                           *xyz), fdot(self[6:], *xyz))

        if xyz0:  # and len(xyz) == len(xyz0)
            xyz = tuple(c0 + c for c0, c in zip(xyz0, xyz))
        return xyz
Exemple #7
0
    def rotate(self, xyz, *xyz0):
        '''Forward rotation M{M0' ⋅ ([x, y, z] - [x0, y0, z0])'}.

           @arg xyz: Local C{(x, y, z)} coordinates (C{3-tuple}).
           @arg xyz0: Optional, local C{(x0, y0, z0)} origin (C{3-tuple}).

           @return: Rotated C{(x, y, z)} location (C{3-tuple}).
        '''
        if xyz0:
            if len(xyz0) != len(xyz):
                raise LenError(self.rotate, xyz0=len(xyz0), xyz=len(xyz))

            xyz = tuple(c - c0 for c, c0 in zip(xyz, xyz0))

        # x' = M[0] * x + M[3] * y + M[6] * z
        # y' = M[1] * x + M[4] * y + M[7] * z
        # z' = M[2] * x + M[5] * y + M[8] * z
        return (fdot(xyz,
                     *self[0::3]), fdot(xyz,
                                        *self[1::3]), fdot(xyz, *self[2::3]))
Exemple #8
0
    def dot(self, other):
        '''Compute the dot (scalar) product of this and an other vector.

           @param other: The other vector (L{Vector3d}).

           @return: Dot product (C{float}).

           @raise TypeError: Incompatible B{C{other}} C{type}.
        '''
        self.others(other)

        return fdot(self.to3xyz(), *other.to3xyz())
Exemple #9
0
    def unrotate(self, xyz, *xyz0):
        '''Inverse rotation M{[x0, y0, z0] + M0 ⋅ [x,y,z]'}.

           @arg xyz: Local C{(x, y, z)} coordinates (C{3-tuple}).
           @arg xyz0: Optional, local C{(x0, y0, z0)} origin (C{3-tuple}).

           @return: Unrotated C{(x, y, z)} location (C{3-tuple}).
        '''
        if xyz0:
            if len(xyz0) != len(xyz):
                raise LenError(self.unrotate, xyz0=len(xyz0), xyz=len(xyz))

            _xyz = (1.0, ) + xyz
            # x' = x0 + M[0] * x + M[1] * y + M[2] * z
            # y' = y0 + M[3] * x + M[4] * y + M[5] * z
            # z' = z0 + M[6] * x + M[7] * y + M[8] * z
            xyz_ = (fdot(_xyz, xyz0[0],
                         *self[0:3]), fdot(_xyz, xyz0[1], *self[3:6]),
                    fdot(_xyz, xyz0[2], *self[6:]))
        else:
            # x' = M[0] * x + M[1] * y + M[2] * z
            # y' = M[3] * x + M[4] * y + M[5] * z
            # z' = M[6] * x + M[7] * y + M[8] * z
            xyz_ = (fdot(xyz,
                         *self[0:3]), fdot(xyz,
                                           *self[3:6]), fdot(xyz, *self[6:]))
        return xyz_
Exemple #10
0
    def transform(self, x, y, z, inverse=False):
        '''Transform a (geocentric) Cartesian point, forward or inverse.

           @arg x: X coordinate (C{meter}).
           @arg y: Y coordinate (C{meter}).
           @arg z: Z coordinate (C{meter}).
           @kwarg inverse: Optional direction, forward or inverse (C{bool}).

           @return: A L{Vector3Tuple}C{(x, y, z)}, transformed.
        '''
        if inverse:
            _xyz = -1, -x, -y, -z
            _s1 = self.s1 - 2  # == -(1 - s * 1e-6)) == -(1 - (s1 - 1))
        else:
            _xyz = 1, x, y, z
            _s1 = self.s1
        # x', y', z' = (.tx + x * .s1 - y * .rz + z * .ry,
        #               .ty + x * .rz + y * .s1 - z * .rx,
        #               .tz - x * .ry + y * .rx + z * .s1)
        r = Vector3Tuple(fdot(_xyz, self.tx, _s1, -self.rz, self.ry),
                         fdot(_xyz, self.ty, self.rz, _s1, -self.rx),
                         fdot(_xyz, self.tz, -self.ry, self.rx, _s1))
        return self._xnamed(r)
Exemple #11
0
    def dot(self, other):
        '''Compute the dot (scalar) product of this and an other vector.

           @arg other: The other vector (L{Vector3d}).

           @return: Dot product (C{float}).

           @raise TypeError: Incompatible B{C{other}} C{type}.
        '''
        if other is self:
            d = self.length2
        else:
            self.others(other)
            d = fdot(self.xyz, *other.xyz)
        return d
Exemple #12
0
    def multiply(self, other):
        '''Matrix multiply M{M0' ⋅ M} this matrix transposed with
           an other matrix.

           @param other: The other matrix (L{EcefMatrix}).

           @return: The matrix product (L{EcefMatrix}).

           @raise TypeError: If B{C{other}} is not L{EcefMatrix}.
        '''
        _TypeError(EcefMatrix, other=other)

        # like LocalCartesian.MatrixMultiply, transposed(self) x other
        # <https://GeographicLib.SourceForge.io/html/LocalCartesian_8cpp_source.html>
        M = (fdot(self[r::3], *other[c::3]) for r in range(3) for c in range(3))
        return EcefMatrix(*M)
Exemple #13
0
def toOsgr(latlon, lon=None, datum=Datums.WGS84, Osgr=Osgr, name=''):
    '''Convert a lat-/longitude point to an OSGR coordinate.

       @param latlon: Latitude (C{degrees}) or an (ellipsoidal)
                      geodetic C{LatLon} point.
       @keyword lon: Optional longitude in degrees (scalar or C{None}).
       @keyword datum: Optional datum to convert (C{Datum}).
       @keyword Osgr: Optional (sub-)class to return the OSGR
                      coordinate (L{Osgr}) or C{None}.
       @keyword name: Optional B{C{Osgr}} name (C{str}).

       @return: The OSGR coordinate (B{C{Osgr}}) or an
                L{EasNor2Tuple}C{(easting, northing)} if B{C{Osgr}}
                is C{None}.

       @raise TypeError: Non-ellipsoidal B{C{latlon}} or B{C{datum}}
                         conversion failed.

       @raise OSGRError: Invalid B{C{latlon}} or B{C{lon}}.

       @example:

       >>> p = LatLon(52.65798, 1.71605)
       >>> r = toOsgr(p)  # TG 51409 13177
       >>> # for conversion of (historical) OSGB36 lat-/longitude:
       >>> r = toOsgr(52.65757, 1.71791, datum=Datums.OSGB36)
    '''
    if not isinstance(latlon, _LLEB):
        # XXX fix failing _LLEB.convertDatum()
        latlon = _LLEB(*parseDMS2(latlon, lon), datum=datum)
    elif lon is not None:
        raise OSGRError('%s not %s: %r' % ('lon', None, lon))
    elif not name:  # use latlon.name
        name = nameof(latlon)

    E = _OSGB36.ellipsoid

    ll = _ll2datum(latlon, _OSGB36, 'latlon')
    a, b = map1(radians, ll.lat, ll.lon)

    sa, ca = sincos2(a)

    s = E.e2s2(sa)  # v, r = E.roc2_(sa, _F0); r = v / r
    v = E.a * _F0 / sqrt(s)  # nu
    r = s / E.e12  # nu / rho == v / (v * E.e12 / s)

    x2 = r - 1  # η2
    ta = tan(a)

    ca3, ca5 = fpowers(ca, 5, 3)  # PYCHOK false!
    ta2, ta4 = fpowers(ta, 4, 2)  # PYCHOK false!

    vsa = v * sa
    I4 = (E.b * _F0 * _M(E.Mabcd, a) + _N0,
         (vsa /   2) * ca,
         (vsa /  24) * ca3 * fsum_(5, -ta2, 9 * x2),
         (vsa / 720) * ca5 * fsum_(61, ta4, -58 * ta2))

    V4 = (_E0,
         (v        * ca),
         (v /   6) * ca3 * (r - ta2),
         (v / 120) * ca5 * fdot((-18, 1, 14, -58), ta2, 5 + ta4, x2, ta2 * x2))

    d, d2, d3, d4, d5, d6 = fpowers(b - _B0, 6)  # PYCHOK false!
    n = fdot(I4, 1, d2, d4, d6)
    e = fdot(V4, 1, d,  d3, d5)

    if Osgr is None:
        r = EasNor2Tuple(e, n)
    else:
        r = Osgr(e, n)
        if lon is None and isinstance(latlon, _LLEB):
            r._latlon = latlon  # XXX weakref(latlon)?
    return _xnamed(r, name)
Exemple #14
0
def toOsgr(latlon,
           lon=None,
           datum=Datums.WGS84,
           Osgr=Osgr,
           name=NN,
           **Osgr_kwds):
    '''Convert a lat-/longitude point to an OSGR coordinate.

       @arg latlon: Latitude (C{degrees}) or an (ellipsoidal) geodetic
                    C{LatLon} point.
       @kwarg lon: Optional longitude in degrees (scalar or C{None}).
       @kwarg datum: Optional datum to convert B{C{lat, lon}} from
                     (L{Datum}, L{Ellipsoid}, L{Ellipsoid2} or
                     L{a_f2Tuple}).
       @kwarg Osgr: Optional class to return the OSGR coordinate
                    (L{Osgr}) or C{None}.
       @kwarg name: Optional B{C{Osgr}} name (C{str}).
       @kwarg Osgr_kwds: Optional, additional B{C{Osgr}} keyword
                         arguments, ignored if B{C{Osgr=None}}.

       @return: The OSGR coordinate (B{C{Osgr}}) or an
                L{EasNor2Tuple}C{(easting, northing)} if B{C{Osgr}}
                is C{None}.

       @raise OSGRError: Invalid B{C{latlon}} or B{C{lon}}.

       @raise TypeError: Non-ellipsoidal B{C{latlon}} or invalid
                         B{C{datum}} or conversion failed.

       @example:

       >>> p = LatLon(52.65798, 1.71605)
       >>> r = toOsgr(p)  # TG 51409 13177
       >>> # for conversion of (historical) OSGB36 lat-/longitude:
       >>> r = toOsgr(52.65757, 1.71791, datum=Datums.OSGB36)
    '''
    if not isinstance(latlon, _LLEB):
        # XXX fix failing _LLEB.convertDatum()
        latlon = _LLEB(*parseDMS2(latlon, lon), datum=datum)
    elif lon is not None:
        raise OSGRError(lon=lon, txt='not %s' % (None, ))
    elif not name:  # use latlon.name
        name = nameof(latlon)

    # if necessary, convert to OSGB36 first
    ll = _ll2datum(latlon, _Datums_OSGB36, _latlon_)
    try:
        a, b = ll.philam
    except AttributeError:
        a, b = map1(radians, ll.lat, ll.lon)
    sa, ca = sincos2(a)

    E = _Datums_OSGB36.ellipsoid

    s = E.e2s2(sa)  # r, v = E.roc2_(sa, _F0); r = v / r
    v = E.a * _F0 / sqrt(s)  # nu
    r = s / E.e12  # nu / rho == v / (v * E.e12 / s) == s / E.e12

    x2 = r - 1  # η2
    ta = tan(a)

    ca3, ca5 = fpowers(ca, 5, 3)  # PYCHOK false!
    ta2, ta4 = fpowers(ta, 4, 2)  # PYCHOK false!

    vsa = v * sa
    I4 = (E.b * _F0 * _M(E.Mabcd, a) + _N0, (vsa / 2) * ca,
          (vsa / 24) * ca3 * fsum_(5, -ta2, 9 * x2),
          (vsa / 720) * ca5 * fsum_(61, ta4, -58 * ta2))

    V4 = (_E0, (v * ca), (v / 6) * ca3 * (r - ta2), (v / 120) * ca5 * fdot(
        (-18, 1, 14, -58), ta2, 5 + ta4, x2, ta2 * x2))

    d, d2, d3, d4, d5, d6 = fpowers(b - _B0, 6)  # PYCHOK false!
    n = fdot(I4, 1, d2, d4, d6)
    e = fdot(V4, 1, d, d3, d5)

    if Osgr is None:
        r = _EasNor2Tuple(e, n)
    else:
        r = Osgr(e, n, datum=_Datums_OSGB36, **Osgr_kwds)
        if lon is None and isinstance(latlon, _LLEB):
            r._latlon = latlon  # XXX weakref(latlon)?
    return _xnamed(r, name)
Exemple #15
0
    def toLatLon(self, LatLon=None, datum=Datums.WGS84):
        '''Convert this OSGR coordinate to an (ellipsoidal) geodetic
           point.

           While OS grid references are based on the OSGB36 datum, the
           I{Ordnance Survey} have deprecated the use of OSGB36 for
           lat-/longitude coordinates (in favour of WGS84). Hence, this
           method returns WGS84 by default with OSGB36 as an option,
           U{see<https://www.OrdnanceSurvey.co.UK/blog/2014/12/2>}.

           I{Note formulation implemented here due to Thomas, Redfearn,
           etc. is as published by OS, but is inferior to Krüger as
           used by e.g. Karney 2011.}

           @kwarg LatLon: Optional ellipsoidal class to return the
                          geodetic point (C{LatLon}) or C{None}.
           @kwarg datum: Optional datum to convert to (L{Datum},
                         L{Ellipsoid}, L{Ellipsoid2}, L{Ellipsoid2}
                         or L{a_f2Tuple}).

           @return: The geodetic point (B{C{LatLon}}) or a
                    L{LatLonDatum3Tuple}C{(lat, lon, datum)}
                    if B{C{LatLon}} is C{None}.

           @raise OSGRError: No convergence.

           @raise TypeError: If B{C{LatLon}} is not ellipsoidal or
                             B{C{datum}} is invalid or conversion failed.

           @example:

           >>> from pygeodesy import ellipsoidalVincenty as eV
           >>> g = Osgr(651409.903, 313177.270)
           >>> p = g.toLatLon(eV.LatLon)  # 52°39′28.723″N, 001°42′57.787″E
           >>> # to obtain (historical) OSGB36 lat-/longitude point
           >>> p = g.toLatLon(eV.LatLon, datum=Datums.OSGB36)  # 52°39′27.253″N, 001°43′04.518″E
        '''
        if self._latlon:
            return self._latlon3(LatLon, datum)

        E = self.datum.ellipsoid  # _Datums_OSGB36.ellipsoid, Airy130
        a_F0 = E.a * _F0
        b_F0 = E.b * _F0

        e, n = self.easting, self.northing
        n_N0 = n - _N0

        a, m = _A0, n_N0
        sa = Fsum(a)
        for self._iteration in range(1, _TRIPS):
            a = sa.fsum_(m / a_F0)
            m = n_N0 - b_F0 * _M(E.Mabcd, a)  # meridional arc
            if abs(m) < _10um:
                break
        else:
            t = _dot_(_item_ps(self.classname, self.toStr(prec=-3)),
                      self.toLatLon.__name__)
            raise OSGRError(_no_convergence_, txt=t)
        sa, ca = sincos2(a)

        s = E.e2s2(sa)  # r, v = E.roc2_(sa, _F0)
        v = a_F0 / sqrt(s)  # nu
        r = v * E.e12 / s  # rho = a_F0 * E.e12 / pow(s, 1.5) == a_F0 * E.e12 / (s * sqrt(s))

        vr = v / r  # == s / E.e12
        x2 = vr - 1  # η2
        ta = tan(a)

        v3, v5, v7 = fpowers(v, 7, 3)  # PYCHOK false!
        ta2, ta4, ta6 = fpowers(ta**2, 3)  # PYCHOK false!

        tar = ta / r
        V4 = (a, tar / (2 * v), tar / (24 * v3) * fdot(
            (1, 3, -9), 5 + x2, ta2, ta2 * x2), tar / (720 * v5) * fdot(
                (61, 90, 45), 1, ta2, ta4))

        csa = 1.0 / ca
        X5 = (_B0, csa / v, csa / (6 * v3) * fsum_(vr, ta2, ta2),
              csa / (120 * v5) * fdot(
                  (5, 28, 24), 1, ta2, ta4), csa / (5040 * v7) * fdot(
                      (61, 662, 1320, 720), 1, ta2, ta4, ta6))

        d, d2, d3, d4, d5, d6, d7 = fpowers(e - _E0, 7)  # PYCHOK false!
        a = fdot(V4, 1, -d2, d4, -d6)
        b = fdot(X5, 1, d, -d3, d5, -d7)

        r = _LLEB(degrees90(a),
                  degrees180(b),
                  datum=self.datum,
                  name=self.name)
        r._iteration = self._iteration  # only ellipsoidal LatLon
        self._latlon = r
        return self._latlon3(LatLon, datum)
Exemple #16
0
 def _xV3(c1, u, x, y):
     xy1 = x, y, _1_0  # transform to original space
     return _V3(fdot(xy1, u.x, -u.y, c1.x),
                fdot(xy1, u.y,  u.x, c1.y), _0_0)
def _xdot(d, a1, b1, a, b, wrap):
    # compute dot product d . (-b + b1, a - a1)
    db, _ = unrollPI(b1, radians(b), wrap=wrap)
    return fdot(d, db, radians(a) - a1)
Exemple #18
0
    def toLatLon(self, LatLon=None, datum=Datums.WGS84):
        '''Convert this OSGR coordinate to an (ellipsoidal) geodetic
           point.

           I{Note formulation implemented here due to Thomas, Redfearn,
           etc. is as published by OS, but is inferior to Krüger as
           used by e.g. Karney 2011.}

           @keyword LatLon: Optional ellipsoidal (sub-)class to return
                            the point (C{LatLon}) or C{None}.
           @keyword datum: Optional datum to use (C{Datum}).

           @return: The geodetic point (B{C{LatLon}}) or a
                    L{LatLonDatum3Tuple}C{(lat, lon, datum)}
                    if B{C{LatLon}} is C{None}.

           @raise TypeError: If B{C{LatLon}} is not ellipsoidal or if
                             B{C{datum}} conversion failed.

           @example:

           >>> from pygeodesy import ellipsoidalVincenty as eV
           >>> g = Osgr(651409.903, 313177.270)
           >>> p = g.toLatLon(eV.LatLon)  # 52°39′28.723″N, 001°42′57.787″E
           >>> # to obtain (historical) OSGB36 lat-/longitude point
           >>> p = g.toLatLon(eV.LatLon, datum=Datums.OSGB36)  # 52°39′27.253″N, 001°43′04.518″E
        '''
        if self._latlon:
            return self._latlon3(LatLon, datum)

        E = _OSGB36.ellipsoid  # Airy130
        a_F0 = E.a * _F0
        b_F0 = E.b * _F0

        e, n = self._easting, self._northing
        n_N0 = n - _N0

        a, M = _A0, 0
        sa = Fsum(a)
        while True:
            t = n_N0 - M
            if t < _10um:
                break
            a = sa.fsum_(t / a_F0)
            M = b_F0 * _M(E.Mabcd, a)

        sa, ca = sincos2(a)

        s = E.e2s2(sa)  # v, r = E.roc2_(sa, _F0)
        v = a_F0 / sqrt(s)  # nu
        r = v * E.e12 / s  # rho

        vr = v / r  # == s / E.e12
        x2 = vr - 1  # η2
        ta = tan(a)

        v3, v5, v7 = fpowers(v, 7, 3)  # PYCHOK false!
        ta2, ta4, ta6 = fpowers(ta**2, 3)  # PYCHOK false!

        tar = ta / r
        V4 = (a,
              tar / (  2 * v),
              tar / ( 24 * v3) * fdot((1, 3, -9), 5 + x2, ta2, ta2 * x2),
              tar / (720 * v5) * fdot((61, 90, 45), 1, ta2, ta4))

        csa = 1.0 / ca
        X5 = (_B0,
              csa / v,
              csa / (   6 * v3) * fsum_(vr, ta, ta),
              csa / ( 120 * v5) * fdot((5, 28, 24), 1, ta2, ta4),
              csa / (5040 * v7) * fdot((61, 662, 1320, 720), ta, ta2, ta4, ta6))

        d, d2, d3, d4, d5, d6, d7 = fpowers(e - _E0, 7)  # PYCHOK false!
        a = fdot(V4, 1,    -d2, d4, -d6)
        b = fdot(X5, 1, d, -d3, d5, -d7)

        self._latlon = _LLEB(degrees90(a), degrees180(b), datum=_OSGB36, name=self.name)
        return self._latlon3(LatLon, datum)
Exemple #19
0
 def _xVector(c1, u, x, y):
     xy1 = x, y, 1  # transform to original space
     return _Vector(fdot(xy1, u.x, -u.y, c1.x),
                    fdot(xy1, u.y,  u.x, c1.y), 0)