def merge_lines(df, by):
    """Use GEOS line merge to merge MultiLineStrings into LineStrings (where possible).

    This uses aggregate_lines first to aggregate lines to MultiLineStrings.

    WARNING: this can be a bit slow.

    Parameters
    ----------
    df : GeoDataFrame
    by : string or list-like
        field(s) to aggregate by

    Returns
    -------
    GeoDataFrame of LineStrings or MultiLinestrings (if required)
    """
    agg = aggregate_lines(df, by)
    agg["geometry"] = pg.line_merge(agg.geometry.values.data)

    geom_type = pg.get_type_id(agg["geometry"].values.data)
    ix = geom_type == 5
    if ix.sum() > 0:
        agg.loc[~ix, "geometry"] = pg.multilinestrings(
            agg.loc[~ix].geometry.values.data, np.arange((~ix).sum()))

    return agg
Exemple #2
0
def country_grid_gdp_filled(trans_network,
                            country,
                            data_path,
                            rough_grid_split=100,
                            from_main_graph=False):
    """[summary]

    Args:
        trans_network ([type]): [description]
        rough_grid_split (int, optional): [description]. Defaults to 100.

    Returns:
        [type]: [description]
    """
    if from_main_graph == True:
        node_df = trans_network.copy()
        envelop = pygeos.envelope(
            pygeos.multilinestrings(node_df.geometry.values))
        height = np.sqrt(pygeos.area(envelop) / rough_grid_split)
    else:
        node_df = trans_network.nodes.copy()
        node_df.geometry, approximate_crs = convert_crs(node_df)
        envelop = pygeos.envelope(
            pygeos.multilinestrings(node_df.geometry.values))
        height = np.sqrt(pygeos.area(envelop) / rough_grid_split)

    gdf_admin = pd.DataFrame(create_grid(create_bbox(node_df), height),
                             columns=['geometry'])

    #load data and convert to pygeos
    country_shape = gpd.read_file(os.path.join(data_path, 'GADM',
                                               'gadm36_levels.gpkg'),
                                  layer=0)
    country_shape = pd.DataFrame(
        country_shape.loc[country_shape.GID_0 == country])
    country_shape.geometry = pygeos.from_shapely(country_shape.geometry)

    gdf_admin = pygeos.intersection(gdf_admin, country_shape.geometry)
    gdf_admin = gdf_admin.loc[~pygeos.is_empty(gdf_admin.geometry)]

    gdf_admin['centroid'] = pygeos.centroid(gdf_admin.geometry)
    gdf_admin['km2'] = area(gdf_admin)
    gdf_admin['gdp'] = get_gdp_values(gdf_admin, data_path)
    gdf_admin = gdf_admin.loc[gdf_admin.gdp > 0].reset_index()
    gdf_admin['gdp_area'] = gdf_admin.gdp / gdf_admin['km2']

    return gdf_admin
def cut_line_at_points(line, cut_points, tolerance=1e-6):
    """Cut a pygeos line geometry at points.
    If there are no interior points, the original line will be returned.

    Parameters
    ----------
    line : pygeos Linestring
    cut_points : list-like of pygeos Points
        will be projected onto the line; those interior to the line will be
        used to cut the line in to new segments.
    tolerance : float, optional (default: 1e-6)
        minimum distance from endpoints to consider the points interior
        to the line.

    Returns
    -------
    MultiLineStrings (or LineString, if unchanged)
    """
    if not pg.get_type_id(line) == 1:
        raise ValueError("line is not a single linestring")

    vertices = pg.get_point(line, range(pg.get_num_points(line)))
    offsets = pg.line_locate_point(line, vertices)
    cut_offsets = pg.line_locate_point(line, cut_points)
    # only keep those that are interior to the line and ignore those very close
    # to endpoints or beyond endpoints
    cut_offsets = cut_offsets[(cut_offsets > tolerance)
                              & (cut_offsets < offsets[-1] - tolerance)]

    if len(cut_offsets) == 0:
        # nothing to cut, return original
        return line

    # get coordinates of new vertices from the cut points (interpolated onto the line)
    cut_offsets.sort()

    # add in the last coordinate of the line
    cut_offsets = np.append(cut_offsets, offsets[-1])

    # TODO: convert this to a pygos ufunc
    coords = pg.get_coordinates(line)
    cut_coords = pg.get_coordinates(
        pg.line_interpolate_point(line, cut_offsets))
    lines = []
    orig_ix = 0
    for cut_ix in range(len(cut_offsets)):
        offset = cut_offsets[cut_ix]

        segment = []
        if cut_ix > 0:
            segment = [cut_coords[cut_ix - 1]]
        while offsets[orig_ix] < offset:
            segment.append(coords[orig_ix])
            orig_ix += 1

        segment.append(cut_coords[cut_ix])
        lines.append(pg.linestrings(segment))

    return pg.multilinestrings(lines)
    def transform_geometry(self, geom, rs, max_points=5):
        """Transforms a geometry embedding new points.

        In case geom is (multi)line or (multi)polygon, it adds points collinear to their neighbours, so that an equivalent geometry is generated. The number of extra points depends on the number of vertices in the geometry.

        Arguments:
            geom (pygeos.Geometry): Geometry
            rs (numpy.RandomState): Random State
            max_points (int): Maximum value of extra points.

        Returns:
            (pygeos.Geometry)

        Raises:
            ValueError: When geometry type is not supported.
        """
        type_ = pg.get_type_id(geom)
        if type_ == 1 or type_ == 3:
            # LINESTRING or POLYGON
            vertices = pg.get_coordinates(geom)
            size = min(max_points, math.ceil(len(vertices) / 6))
            vert_ids = rs.randint(1, len(vertices), size)
            vert_ids.sort()
            new = []
            for idx in vert_ids:
                xa, ya = vertices[idx - 1]
                xb, yb = vertices[idx]
                if xa == xb:
                    x = xa
                    y = self._random_float(rs, ya, yb)
                else:
                    x = self._random_float(rs, xa, xb)
                    y = (yb - ya) * (x - xa) / (xb - xa) + ya
                x = _round(x, [xa, xb])
                y = _round(y, [ya, yb])
                new.append((idx, [x, y]))
            offset = 0
            extended = []
            for idx, entry in new:
                extended.extend(vertices[offset:idx])
                extended.append(entry)
                offset = idx
            extended.extend(vertices[offset:])
            extended = np.array(extended)
            result = pg.linestrings(extended) if type_ == 1 else pg.polygons(
                extended)
        elif type_ == 5 or type_ == 6:
            # MULTILINESTRING or MULTIPOLYGON
            parts = pg.get_parts(geom)
            part_idx = rs.randint(0, len(parts))
            parts[part_idx] = self.transform_geometry(parts[part_idx], rs)
            result = pg.multilinestrings(
                parts) if type_ == 5 else pg.multipolygons(parts)
        else:
            raise ValueError(
                'geom should be linestring, polygon, multilinestring, or multipolygon.'
            )

        return result
Exemple #5
0
def cut_line_at_points(coords, cut_offsets):
    """Cut a pygeos line geometry at points.  The points must be interior
    to the line.

    Parameters
    ----------
    coords : ndarray of shape (2,n)
        line coordinates
    cut_points : list-like of offsets projected onto the line

    Returns
    -------
    MultiLineStrings
    """
    new_coords, line_ix = split_coords(coords, cut_offsets)
    return pg.multilinestrings(pg.linestrings(new_coords, indices=line_ix))
Exemple #6
0
import numpy as np
import pygeos

point_polygon_testdata = (
    pygeos.points(np.arange(6), np.arange(6)),
    pygeos.box(2, 2, 4, 4),
)
point = pygeos.points(2, 3)
line_string = pygeos.linestrings([(0, 0), (1, 0), (1, 1)])
linear_ring = pygeos.linearrings([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
polygon = pygeos.polygons([(0, 0), (2, 0), (2, 2), (0, 2), (0, 0)])
multi_point = pygeos.multipoints([(0, 0), (1, 2)])
multi_line_string = pygeos.multilinestrings([[(0, 0), (1, 2)]])
multi_polygon = pygeos.multipolygons([
    [(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
    [(2.1, 2.1), (2.2, 2.1), (2.2, 2.2), (2.1, 2.2), (2.1, 2.1)],
])
geometry_collection = pygeos.geometrycollections(
    [pygeos.points(51, -1),
     pygeos.linestrings([(52, -1), (49, 2)])])
point_z = pygeos.points(1.0, 1.0, 1.0)
polygon_with_hole = pygeos.Geometry(
    "POLYGON((0 0, 0 10, 10 10, 10 0, 0 0), (2 2, 2 4, 4 4, 4 2, 2 2))")

all_types = (
    point,
    line_string,
    linear_ring,
    polygon,
    multi_point,
    multi_line_string,
Exemple #7
0
def test_multilinearrings():
    actual = pygeos.multilinestrings([linear_ring], indices=[0])
    assert_geometries_equal(actual, pygeos.multilinestrings([linear_ring]))
Exemple #8
0
import numpy as np
import pygeos

point_polygon_testdata = (
    pygeos.points(np.arange(6), np.arange(6)),
    pygeos.box(2, 2, 4, 4),
)
point = pygeos.points(2, 2)
line_string = pygeos.linestrings([[0, 0], [1, 0], [1, 1]])
linear_ring = pygeos.linearrings(((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
polygon = pygeos.polygons(
    ((0.0, 0.0), (0.0, 2.0), (2.0, 2.0), (2.0, 0.0), (0.0, 0.0)))
multi_point = pygeos.multipoints([[0.0, 0.0], [1.0, 2.0]])
multi_line_string = pygeos.multilinestrings([[[0.0, 0.0], [1.0, 2.0]]])
multi_polygon = pygeos.multipolygons([
    ((0.0, 0.0), (0.0, 1.0), (1.0, 1.0), (1.0, 0.0)),
    ((0.1, 0.1), (0.1, 0.2), (0.2, 0.2), (0.2, 0.1)),
])
geometry_collection = pygeos.geometrycollections(
    [pygeos.points(51, -1),
     pygeos.linestrings([(52, -1), (49, 2)])])
point_z = pygeos.points(1.0, 1.0, 1.0)

all_types = (
    point,
    line_string,
    linear_ring,
    polygon,
    multi_point,
    multi_line_string,
    multi_polygon,
def test_multilinearrings():
    actual = pygeos.multilinestrings(
        np.array([linear_ring], dtype=object), indices=np.zeros(1, dtype=np.intp)
    )
    assert_geometries_equal(actual, pygeos.multilinestrings([linear_ring]))