Exemple #1
0
def main():
    parser = getparser()
    args = parser.parse_args()

    #Note: res and extent are passed directly to warplib.memwarp_multi_fn, so can be many types
    s = malib.DEMStack(fn_list=args.src_fn_list, stack_fn=args.stack_fn, outdir=args.outdir, res=args.tr, extent=args.te, srs=args.t_srs, trend=args.trend, med=args.med, stats=args.stats, save=args.save, sort=args.sort, datestack=args.datestack)

    print(s.stack_fn)
Exemple #2
0
def main():
    parser = getparser()
    args = parser.parse_args()

    if args.stack_fn is not None:
        if os.path.exists(args.stack_fn):
            sys.exit("Found existing stack_fn: %s" % args.stack_fn)

    #Note: res and extent are passed directly to warplib.memwarp_multi_fn, so can be many types
    s = malib.DEMStack(fn_list=args.src_fn_list, stack_fn=args.stack_fn, outdir=args.outdir, \
            res=args.tr, extent=args.te, srs=args.t_srs, \
            trend=args.trend, robust=args.robust, n_thresh=args.min_n, min_dt_ptp=args.min_dt_ptp, n_cpu=args.n_cpu, \
            med=args.med, stats=args.stats, save=args.save, sort=args.sort, datestack=args.datestack)
    print(s.stack_fn)
Exemple #3
0
    pltlib.add_scalebar(axa[0], res=res)
    plt.tight_layout()

outdir = 'stack_anomaly'
if not os.path.exists(outdir):
    os.makedirs(outdir)

#dem_fn_list = glob.glob('*8m_trans_warp.tif')
#stack = malib.DEMStack(dem_fn_list, med=True)
#dem_ref_fn = 'rainier_allgood_mos-tile-0_warp.tif'
#dem_ref = iolib.fn_getma(dem_ref_fn)

stack_fn = sys.argv[1]
#stack = malib.DEMStack(stack_fn=stack_fn, med=True)
#dem_ref = stack.stack_med
stack = malib.DEMStack(stack_fn=stack_fn)
dem_ref = stack.stack_mean
dem_ds = stack.get_ds()
dem_clim = malib.calcperc(dem_ref, (2,98))
dem_fn_list = stack.fn_list 
anomaly_stack = stack.ma_stack - dem_ref
anomaly_clim = np.max(np.abs(malib.calcperc(anomaly_stack, (1,99))))
anomaly_clim = (-anomaly_clim, anomaly_clim)

#for dem_fn in [dem_ref_fn]+dem_fn_list:
for n, dem_fn in enumerate(dem_fn_list):
    print('%i of %i: %s' % (n+1, len(dem_fn_list), dem_fn))
    #print(dem_fn)
    #dem_ds = iolib.fn_getds(dem_fn)
    #dem = iolib.ds_getma(dem_ds)
    dem_fn = stack.fn_list[n]
Exemple #4
0
for n, feat in enumerate(glac_shp_lyr):
    #glac_geom_orig = geolib.geom_dup(feat.GetGeometryRef())
    feat_fn = rgi_name(feat)
    print(n, feat_fn)
    glac_geom = geolib.geom_dup(feat.GetGeometryRef())
    glac_geom_extent = geolib.geom_extent(glac_geom)

    #Spatial filter
    aster_index_lyr.SetSpatialFilter(glac_geom)
    aster_count = aster_index_lyr.GetFeatureCount()
    print("ASTER count after spatial filter: %i" % aster_count)
    if aster_count > min_aster_count:
        fn_list = []
        for aster_feat in aster_index_lyr:
            #Only 1 field from gdaltindex, 'location'
            fn = os.path.join(asterdir, aster_feat.GetField(0))
            fn_list.append(fn)
        stack = malib.DEMStack(fn_list, outdir=os.path.join(stackdir, feat_fn), \
                res='max', extent=glac_geom_extent, srs=aster_index_srs, mask_geom=glac_geom, n_thresh=min_aster_count, min_dt_ptp=min_dt_ptp)
        #if stack.ma_stack is not None:
        #sys.exit()
        #glac_geom_mask = geolib.geom2mask(glac_geom, stack.get_ds())
        #ds_list = warplib.memwarp_multi_fn(fn_list, res='max', extent=glac_geom_extent)
    aster_index_lyr.ResetReading()

#Generate plots
#hs.sh */*mean.tif
#for i in */*trend.tif; do  imviewer.py -clim -10 10 -cmap RdYlBu -label 'Trend (m/yr)' -of png -overlay $(echo $i | sed 's/_trend/_mean_hs_az315/') $i -scalebar -outsize 8 8 -dpi 100; done
#for i in */*count.tif; do imviewer.py -clim 0 20 -cmap inferno -label 'Count' -of png -overlay $(echo $i | sed 's/_count/_mean_hs_az315/') $i -scalebar -outsize 8 8 -dpi 100; done
#for i in */*[0-9]_std.tif; do imviewer.py -clim 0 30 -label 'Std (m)' -of png -overlay $(echo $i | sed 's/_std/_mean_hs_az315/') $i -scalebar -outsize 8 8 -dpi 100; done
Exemple #5
0
def main():
    if len(sys.argv) != 2:
        sys.exit("Usage: %s stack.npz" % os.path.basename(sys.argv[0]))

    stack_fn = sys.argv[1]

    print "Loading stack"
    s = malib.DEMStack(stack_fn=stack_fn, stats=True, trend=True, save=False)
    global d
    d = s.date_list_o

    d_ptp = d[-1] - d[0]
    d_pad = 0.03*d_ptp
    global min_dt
    min_dt = d[0]-d_pad
    global max_dt
    max_dt = d[-1]+d_pad
    #Use these to set bounds to hardcode min/max of all stacks
    #import pytz
    #min_dt = datetime(1999,1,1)
    #min_dt = datetime(2007,1,1, tzinfo=pytz.utc)
    #max_dt = datetime(2015,12,31, tzinfo=pytz.utc)

    global source
    source = np.ma.array(s.source)
    global source_dict
    source_dict = get_source_dict()
    global error 
    error = s.error
    global gt
    gt = s.gt
    global m
    m = s.ma_stack
    val = s.stack_mean
    count = s.stack_count
    std = s.stack_std
    trend = s.stack_trend
    detrended_std = s.stack_detrended_std
    stack_type = 'dem'
    global filter_outliers
    filter_outliers = False 

    global pad
    global geoid_offset
    global plot_trend
    global plot_resid
    global errorbars

    if 'TSX' in source or 'ALOS' in source or 'RS1' in source or 'RS2' in source:
        stack_type = 'velocity' 

    if 'zs' in stack_fn:
        stack_type = 'racmo'

    if 'meltrate' in stack_fn:
        stack_type = 'meltrate'

    if stack_type == 'velocity':
        #pad = 3
        #Use this for Jak stack with RADARSAT data
        pad = 0
        ylabel = 'Velocity (m/yr)'
        ylabel_rel = 'Relative Velocity (m/yr)'
        ylabel_resid = 'Detrended Velocity (m/yr)'
        plot4_label = 'Detrended std (m/yr)'
        hs = None
        alpha = 1.0
        geoid_offset = False
        plot_trend = False
        plot_resid = False
        errorbars = False
        if 'RS' in source:
            filter_outliers = True
    elif stack_type == 'racmo':
        pad = 0
        ylabel = 'RACMOFDM zs (m)'
        ylabel_rel = 'Relative RACMOFDM zs (m)'
        ylabel_resid = 'Detrended RACMOFDM zs (m)'
        plot4_label = 'Detrended std (m)'
        hs = None
        alpha = 1.0
        geoid_offset = False
        plot_trend = True 
        plot_resid = True 
        errorbars = False
    elif stack_type == 'meltrate':
        pad = 3
        ylabel = 'Melt Rate (m/yr)'
        ylabel_rel = 'Relative Melt Rate (m/yr)'
        ylabel_resid = 'Detrended Melt Rate (m/yr)'
        plot4_label = 'Detrended std (m/yr)'
        hs = None
        alpha = 1.0
        geoid_offset = False
        plot_trend = True 
        plot_resid = False 
        errorbars = False
    else:
        #pad = 5
        #pad = 1
        pad = 3
        ylabel = 'Elevation (m EGM2008)'
        ylabel_rel = 'Relative Elevation (m)'
        ylabel_resid = 'Detrended Elevation (m)'
        #plot4_label = 'Detrended std (m)'
        plot4_label = 'Elevation std (m)'
        s.mean_hillshade()
        hs = s.stack_mean_hs
        hs_clim = malib.calcperc(hs, (2,98))
        alpha = 0.6
        geoid_offset = False 
        plot_trend = True
        plot_resid = True 
        errorbars = True

    #Set color cycle
    reset_colors()

    global ms
    ms = 5

    #fig = plt.figure(0, figsize=(14,12), facecolor='white')
    fig = plt.figure(0, figsize=(14,12))

    #These record all points plotted on the context plots
    global ax_pt_list
    ax_pt_list = [[], [], [], []]

    interp = 'none'
    #interp = 'bicubic'

    #Overlay on mean_hs
    #Add colorbars
    imshow_kwargs = {'interpolation':interp}

    val_clim = malib.calcperc(val, (2,98))
    ax0 = fig.add_subplot(221)
    if hs is not None:
        ax0.imshow(hs, cmap='gray', clim=hs_clim, **imshow_kwargs)
    im0 = ax0.imshow(val, cmap=cpt_rainbow, clim=val_clim, alpha=alpha, **imshow_kwargs)
    #This was used for Stanton et al figure
    #val_clim = (0, 50)
    #im0 = ax0.imshow(val, cmap=cmaps.inferno, clim=val_clim, alpha=alpha, **imshow_kwargs)
    ax0.set_adjustable('box-forced')
    pltlib.hide_ticks(ax0)
    pltlib.add_cbar(ax0, im0, ylabel)

    count_clim = malib.calcperc(count, (2,98))
    #count_clim = malib.calcperc(count, (4,100))
    ax1 = fig.add_subplot(222, sharex=ax0, sharey=ax0)
    if hs is not None:
        ax1.imshow(hs, cmap='gray', clim=hs_clim, **imshow_kwargs)
    im1 = ax1.imshow(count, cmap=cmaps.inferno, clim=count_clim, alpha=alpha, **imshow_kwargs)
    ax1.set_adjustable('box-forced')
    pltlib.hide_ticks(ax1)
    pltlib.add_cbar(ax1, im1, 'Count')

    #clim=(-20, 20)
    #trend_clim = malib.calcperc(trend, (1,99))
    #trend_clim = malib.calcperc(trend, (2,98))
    trend_clim = malib.calcperc(trend, (4,96))
    #trend_clim = malib.calcperc(trend, (10,90))
    max_abs_clim = max(np.abs(trend_clim))
    trend_clim = (-max_abs_clim, max_abs_clim)
    ax2 = fig.add_subplot(223, sharex=ax0, sharey=ax0)
    #ax0.set_title("Trend")
    if hs is not None:
        ax2.imshow(hs, cmap='gray', clim=hs_clim, **imshow_kwargs)
    im2 = ax2.imshow(trend, cmap='RdBu', clim=trend_clim, alpha=alpha, **imshow_kwargs)
    ax2.set_adjustable('box-forced')
    pltlib.hide_ticks(ax2)
    pltlib.add_cbar(ax2, im2, 'Linear Trend (m/yr)')

    dstd_clim = (0, malib.calcperc(std, (0,95))[1])
    #dstd_clim = (0, malib.calcperc(detrended_std, (0,98))[1])
    ax3 = fig.add_subplot(224, sharex=ax0, sharey=ax0)
    if hs is not None:
        ax3.imshow(hs, cmap='gray', clim=hs_clim, **imshow_kwargs)
    im3 = ax3.imshow(detrended_std, cmap=cpt_rainbow, clim=dstd_clim, alpha=alpha, **imshow_kwargs)
    #im3 = ax3.imshow(std, cmap=cpt_rainbow, clim=dstd_clim, alpha=alpha, **imshow_kwargs)
    ax3.set_adjustable('box-forced')
    pltlib.hide_ticks(ax3)
    #pltlib.add_cbar(ax3, im3, 'Detrended Std (m)')
    pltlib.add_cbar(ax3, im3, plot4_label)

    global ax_list
    ax_list = [ax0, ax1, ax2, ax3]

    plt.autoscale(tight=True)
    plt.tight_layout()

    cid = fig.canvas.mpl_connect('button_press_event', onclick)

    fig1 = plt.figure(1)
    global ax_rel
    ax_rel = fig1.add_subplot(111)
    fmt_ax(ax_rel, ylabel=ylabel_rel, legend_source=source)

    fig2 = plt.figure(2)
    global ax_abs
    ax_abs = fig2.add_subplot(111)
    fmt_ax(ax_abs, ylabel=ylabel, legend_source=source)

    fig3 = plt.figure(3)
    global ax_resid
    ax_resid = fig3.add_subplot(111)
    fmt_ax(ax_resid, ylabel=ylabel_resid, legend_source=source)
    plt.axhline(0, color='k', linestyle='-', linewidth=0.6)

    """
    #print "Saving figure"
    #fig_fn = os.path.splitext(s.stack_fn)[0] + '_context_maps.pdf'
    fig_fn = os.path.splitext(s.stack_fn)[0] + '_context_maps.png'
    plt.figure(0)
    plt.tight_layout()
    plt.savefig(fig_fn, dpi=300)

    fig_fn = os.path.splitext(s.stack_fn)[0] + '.png'
    plt.figure(2)
    #plt.ylim(70, 350)
    plt.tight_layout()
    plt.savefig(fig_fn, dpi=300)
    """

    plt.show()
Exemple #6
0
def main():

    if len(sys.argv) < 2:
        sys.exit("Usage: %s stack.npz [mask.tif]" %
                 os.path.basename(sys.argv[0]))

    #This will attempt to load cached files on disk
    load_existing = False
    #Limit spatial interpolation to input mask
    clip_to_mask = True

    #This expects a DEMStack object, see pygeotools/lib/malib.py or pygeotools/make_stack.py
    stack_fn = sys.argv[1]
    #Expects shp polygon as valid mask, in same projection as input raster
    mask_fn = sys.argv[2]

    stack = malib.DEMStack(stack_fn=stack_fn,
                           save=False,
                           trend=True,
                           med=True,
                           stats=True)
    #Get times of original obs
    t = stack.date_list_o.data
    t = t.astype(int)
    t[0] -= 0.1
    t[-1] += 0.1

    if clip_to_mask:
        m = geolib.shp2array(mask_fn, res=stack.res, extent=stack.extent)
        #Expand mask - hardcoded to 6 km
        import scipy.ndimage
        it = int(np.ceil(6000. / stack.res))
        m = ~(scipy.ndimage.morphology.binary_dilation(~m, iterations=it))
        apply_mask(stack.ma_stack, m)

    #This is used frome here on out
    test = stack.ma_stack
    test_ptp = stack.dt_stack_ptp
    test_source = np.array(stack.source)
    res = stack.res
    gt = np.copy(stack.gt)

    #Probably don't need rull-res stack
    if True:
        stride = 2
        test = test[:, ::stride, ::stride]
        test_ptp = test_ptp[::stride, ::stride]
        res *= stride
        print("Using a stride of %i (%0.1f m)" % (stride, res))
        gt[[1, 5]] *= stride

    print("Orig shape: ", test.shape)
    #Check to make sure all t have valid data
    tcount = test.reshape(test.shape[0],
                          test.shape[1] * test.shape[2]).count(axis=1)
    validt_idx = (tcount > 0).nonzero()[0]
    test = test[validt_idx]
    test_source = test_source[validt_idx]
    t = t[validt_idx]
    print("New shape: ", test.shape)

    y, x = (test.count(axis=0) > 1).nonzero()
    x = x.astype(int)
    y = y.astype(int)
    #vm_t = test.reshape(test.shape[0], test.shape[1]*test.shape[2])
    vm_t = test[:, y, x]
    vm_t_flat = vm_t.ravel()
    idx = ~np.ma.getmaskarray(vm_t_flat)
    #These are values
    VM = vm_t_flat[idx]

    #Determine scaling factors for x and y coords
    #Should be the same for both
    xy_scale = max(x.ptp(), y.ptp())
    xy_offset = min(x.min(), y.min())

    #This scales t to encourage interpolation along the time axis rather than spatial axis
    t_factor = 16.
    t_scale = t.ptp() * t_factor
    t_offset = t.min()

    xn = rangenorm(x, xy_offset, xy_scale)
    yn = rangenorm(y, xy_offset, xy_scale)
    tn = rangenorm(t, t_offset, t_scale)

    X = np.tile(xn, t.size)[idx]
    Y = np.tile(yn, t.size)[idx]
    T = np.repeat(tn, x.size)[idx]
    #These are coords
    pts = np.vstack((X, Y, T)).T

    #Step size in days
    #ti_dt = 91.3125
    #ti_dt = 121.75
    ti_dt = 365.25

    #Set min and max times for interpolation
    #ti = np.arange(t.min(), t.max(), ti_dt)
    ti_min = timelib.dt2o(datetime(2008, 1, 1))
    ti_max = timelib.dt2o(datetime(2015, 1, 1))

    #Interpolate at these times
    ti = np.arange(ti_min, ti_max, ti_dt)
    #Annual
    #ti = timelib.dt2o([datetime(2008,1,1), datetime(2009,1,1), datetime(2010,1,1), datetime(2011,1,1), datetime(2012,1,1), datetime(2013,1,1), datetime(2014,1,1), datetime(2015,1,1)])

    tin = rangenorm(ti, t_offset, t_scale)
    """
    #Never got this working efficiently, but preserved for reference
    #Radial basis function interpolation
    #Need to normalize to input cube  
    print "Running Rbf interpolation for %i points" % X.size
    rbfi = scipy.interpolate.Rbf(Xn,Yn,Tn,VM, function='linear', smooth=0.1)
    #rbfi = scipy.interpolate.Rbf(Xn,Yn,Tn,VM, function='gaussian', smooth=0.000001)
    #rbfi = scipy.interpolate.Rbf(Xn,Yn,Tn,VM, function='inverse', smooth=0.00001)
    print "Sampling result at %i points" % xin.size
    vmi_rbf = rbfi(xin, yin, tin.repeat(x.size))
    vmi_rbf_ma[:,y,x] = np.ma.fix_invalid(vmi_rbf.reshape((ti.size, x.shape[0])))
    """

    #Attempt to load cached interpolation function
    int_fn = '%s_LinearNDint_%i_%i.pck' % (os.path.splitext(stack_fn)[0],
                                           test.shape[1], test.shape[2])
    print(int_fn)
    if load_existing and os.path.exists(int_fn):
        print("Loading pickled interpolation function: %s" % int_fn)
        f = open(int_fn, 'rb')
        linNDint = pickle.load(f)
    else:
        #NearestND interpolation (fast)
        #print "Running NearestND interpolation for %i points" % X.size
        #NearNDint = scipy.interpolate.NearestNDInterpolator(pts, VM, rescale=True)
        #LinearND interpolation
        print("Running LinearND interpolation for %i points" % X.size)
        #Note: this breaks qhull for lots of input points
        linNDint = scipy.interpolate.LinearNDInterpolator(pts,
                                                          VM,
                                                          rescale=False)
        print("Saving pickled interpolation function: %s" % int_fn)
        f = open(int_fn, 'wb')
        pickle.dump(linNDint, f, protocol=2)
        f.close()

    vmi_fn = '%s_%iday.npy' % (os.path.splitext(int_fn)[0], ti_dt)
    if load_existing and os.path.exists(vmi_fn):
        print('Loading existing interpolated stack: %s' % vmi_fn)
        vmi_ma = np.ma.fix_invalid(np.load(vmi_fn)['arr_0'])
    else:
        #Once tesselation is complete, sample each timestep in parallel
        print("Sampling %i points at %i timesteps, %i total" %
              (x.size, ti.size, x.size * ti.size))
        #Prepare array to hold output
        vmi_ma = np.ma.masked_all((ti.size, test.shape[1], test.shape[2]))
        """
        #This does all points at once
        #vmi = linNDint(ptsi)
        #vmi_ma[:,y,x] = np.ma.fix_invalid(vmi.reshape((ti.size, x.shape[0])))
        #This does interpolation serially by timestep
        for n, i in enumerate(ti):
            print n, i, timelib.o2dt(i)
            vmi_ma[n,y,x] = linNDint(x, y, i.repeat(x.size)).T
        """
        #Parallel processing
        pool = mp.Pool(processes=None)
        results = [
            pool.apply_async(dto_interp, args=(linNDint, xn, yn, i))
            for i in tin
        ]
        results = [p.get() for p in results]
        results.sort()
        for n, r in enumerate(results):
            t_rescale = r[0] * t_scale + t_offset
            print(n, t_rescale, timelib.o2dt(t_rescale))
            vmi_ma[n, y, x] = r[1]

        vmi_ma = np.ma.fix_invalid(vmi_ma)
        print('Saving interpolated stack: %s' % vmi_fn)
        np.save(vmi_fn, vmi_ma.filled(np.nan))

    origt = False
    if origt:
        print("Sampling %i points at %i original timesteps" % (x.size, t.size))
        vmi_ma_origt = np.ma.masked_all((t.size, test.shape[1], test.shape[2]))
        #Parallel
        pool = mp.Pool(processes=None)
        results = [
            pool.apply_async(dto_interp, args=(linNDint, x, y, i)) for i in t
        ]
        results = [p.get() for p in results]
        results.sort()
        for n, r in enumerate(results):
            print(n, r[0], timelib.o2dt(r[0]))
            vmi_ma_origt[n, y, x] = r[1]
        vmi_ma_origt = np.ma.fix_invalid(vmi_ma_origt)
        #print 'Saving interpolated stack: %s' % vmi_fn
        #np.save(vmi_fn, vmi_ma.filled(np.nan))

    #Write out a proper stack, for use by stack_melt and flux gate mass budget
    if True:
        out_stack = deepcopy(stack)
        out_stack.stats = False
        out_stack.trend = False
        out_stack.datestack = False
        out_stack.write_stats = False
        out_stack.write_trend = False
        out_stack.write_datestack = False
        out_stack.ma_stack = vmi_ma
        out_stack.stack_fn = os.path.splitext(vmi_fn)[0] + '.npz'
        out_stack.date_list_o = np.ma.array(ti)
        out_stack.date_list = np.ma.array(timelib.o2dt(ti))
        out_fn_list = [
            timelib.print_dt(i) + '_LinearNDint.tif'
            for i in out_stack.date_list
        ]
        out_stack.fn_list = out_fn_list
        out_stack.error = np.zeros_like(out_stack.date_list_o)
        out_stack.source = np.repeat('LinearNDint', ti.size)
        out_stack.gt = gt
        out_stack.res = res
        out_stack.savestack()

    sys.exit()
    """
    #Other interpolation methods
    #vmi = scipy.interpolate.griddata(pts, VM, ptsi, method='linear', rescale=True)

    #Kriging
    #Should explore this more - likely the best option
    #http://connor-johnson.com/2014/03/20/simple-kriging-in-python/
    #http://resources.esri.com/help/9.3/arcgisengine/java/gp_toolref/geoprocessing_with_3d_analyst/using_kriging_in_3d_analyst.htm

    #PyKrige does moving window Kriging, but only in 2D
    #https://github.com/bsmurphy/PyKrige/pull/5

    #Could do tiled kriging with overlap in parallel
    #Split along x and y direction, preserve all t
    #Need to generate semivariogram globally though, then pass to each tile
    #See malib sliding_window
    wx = wy = 30
    wz = test.shape[0]
    overlap = 0.5
    dwx = dwy = int(overlap*wx)
    gp_slices = malib.nanfill(test, malib.sliding_window, ws=(wz,wy,wx), ss=(0,dwy,dwx))

    vmi_gp_ma = np.ma.masked_all((ti.size, test.shape[1], test.shape[2]))
    vmi_gp_mse_ma = np.ma.masked_all((ti.size, test.shape[1], test.shape[2]))

    out = []
    for i in gp_slices:
        y, x = (i.count(axis=0) > 0).nonzero()
        x = x.astype(int)
        y = y.astype(int)
        vm_t = test[:,y,x]
        vm_t_flat = vm_t.ravel()
        idx = ~np.ma.getmaskarray(vm_t_flat)
        #These are values
        VM = vm_t_flat[idx]

        #These are coords
        X = np.tile(x, t.size)[idx]
        Y = np.tile(y, t.size)[idx]
        T = np.repeat(t, x.size)[idx]
        pts = np.vstack((X,Y,T)).T

        xi = np.tile(x, ti.size)
        yi = np.tile(y, ti.size)
        ptsi = np.array((xi, yi, ti.repeat(x.size))).T

        #gp = GaussianProcess(regr='linear', verbose=True, normalize=True, theta0=0.1, nugget=2)
        gp = GaussianProcess(regr='linear', verbose=True, normalize=True, nugget=2)
        gp.fit(pts, VM)
        vmi_gp, vmi_gp_mse = gp.predict(ptsi, eval_MSE=True)
        vmi_gp_ma = np.ma.masked_all((ti.size, i.shape[1], i.shape[2]))
        vmi_gp_ma[:,y,x] = np.array(vmi_gp.reshape((ti.size, x.shape[0])))
        vmi_gp_mse_ma = np.ma.masked_all((ti.size, i.shape[1], i.shape[2]))
        vmi_gp_mse_ma[:,y,x] = np.array(vmi_gp_mse.reshape((ti.size, x.shape[0])))
        out.append(vmi_gp_ma)
    #Now combine intelligently

    print "Gaussian Process regression"
    pts2d_vm = vm_t[1]
    pts2d = np.vstack((x,y))[~(np.ma.getmaskarray(pts2d_vm))].T
    pts2di = np.vstack((x,y)).T
    gp = GaussianProcess(regr='linear', verbose=True, normalize=True, theta0=0.1, nugget=1)
    gp.fit(pts, VM)
    print "Gaussian Process prediction"
    vmi_gp, vmi_gp_mse = gp.predict(ptsi, eval_MSE=True)
    print "Converting to stack"
    vmi_gp_ma = np.ma.masked_all((ti.size, test.shape[1], test.shape[2]))
    vmi_gp_ma[:,y,x] = np.array(vmi_gp.reshape((ti.size, x.shape[0])))
    vmi_gp_mse_ma = np.ma.masked_all((ti.size, test.shape[1], test.shape[2]))
    vmi_gp_mse_ma[:,y,x] = np.array(vmi_gp_mse.reshape((ti.size, x.shape[0])))
    sigma = np.sqrt(vmi_gp_mse_ma)
    """
    """
Exemple #7
0
if dt_start is not None:
    dt_start = datetime.strptime(args.dt_start, '%Y%m%d')
if dt_end is not None:
    dt_end = datetime.strptime(args.dt_end, '%Y%m%d')

#Clean this up
if args.fn is not None:
    if os.path.exists(args.fn):
        fn = args.fn
        ds = gdal.Open(fn)
        site_list = site_filter_extent_ds(ds, pad=args.extent_pad)
elif args.extent is not None:
    site_list = site_filter_extent(extent, pad=args.extent_pad)
elif args.stack_fn is not None:
    #DEM stack, can be used to plot lines on SNOTEL time series
    stack = malib.DEMStack(stack_fn=args.stack_fn)
    dem_dt = stack.date_list
    ds = stack.get_ds()
    site_list = site_filter_extent_ds(ds, pad=args.extent_pad)
else:
    sys.exit("Must provide valid raster filename or lat/lon extent")

#sitename = 'baker'
#site_list = [999, 909, 1011, 910]
#sitename = 'gm'
#site_list = [622, 682]

if site_list is None:
    sys.exit("No valid sites identified")

vlist = args.vlist