Exemple #1
0
x, y, z = geolib.cT_helper(glas_pts[:, 3], glas_pts[:, 2], glas_pts[:, 4],
                           geolib.wgs_srs, srs)

#pt_array = glas_pts[:,[3,2,4,0]]
pt_array = np.array([x, y, z, glas_pts[:, 0]]).T

#Cluster
dt_thresh = 16.0
d = np.diff(pt_array[:, 3])
b = np.nonzero(d > dt_thresh)[0] + 1
b = np.hstack((0, b, d.shape[0]))
f_list = []
dt_list = []
for i in range(len(b) - 1):
    f = pt_array[b[i]:b[i + 1]]
    min_dt = timelib.o2dt(f[:, 3].min())
    max_dt = timelib.o2dt(f[:, 3].max())
    mid_dt = f[:, 3].min() + (f[:, 3].max() - f[:, 3].min()) / 2.0
    mean_dt = timelib.o2dt(f[:, 3].mean())
    med_dt = timelib.o2dt(np.median(f[:, 3]))
    f_list.append(f)
    dt_list.append([min_dt, max_dt, mid_dt, mean_dt, med_dt])

statlist = ('median', 'mean', 'count', 'std')
res = 300
for n, f in enumerate(f_list):
    mean_dt = dt_list[n][3]
    for stat in statlist:
        g_count, ds = geolib.block_stats_grid_gen(f[:, 0],
                                                  f[:, 1],
                                                  f[:, 2],
Exemple #2
0
def sample_stack(ex, ey, geoid_offset=False, pad=3):
    if ex > m.shape[2]-1 or ey > m.shape[1]-1:
        print "Input coordinates are outside stack extent:"
        print ex, ey
        print m.shape
        v = None
    else:
        print "Sampling with pad: %i" % pad
        if pad == 0:
            v = m[:,ey,ex]
        else:
            window_x = np.around(np.clip([ex-pad, ex+pad+1], 0, m.shape[2]-1)).astype(int)
            window_y = np.around(np.clip([ey-pad, ey+pad+1], 0, m.shape[1]-1)).astype(int)
            print window_x
            print window_y
            v = m[:,window_y[0]:window_y[1],window_x[0]:window_x[1]].reshape(m.shape[0], np.ptp(window_x)*np.ptp(window_y))
            #v = v.mean(axis=1)
            v = np.ma.median(v, axis=1)
        if v.count() == 0:
            print "No valid values"
        else:
            mx, my = geolib.pixelToMap(ex, ey, gt)
            print ex, ey, mx, my
            print "Count: %i" % v.count()
            #Hack to get elevations relative to geoid
            #Note: this can be added multiple times if clicked quickly
            if geoid_offset:
                #geoid_offset = geolib.sps2geoid(mx, my, 0.0)[2]
                geoid_offset = geolib.nps2geoid(mx, my, 0.0)[2]
                print "Removing geoid offset: %0.1f" % geoid_offset
                v += geoid_offset
        #Should filter here
        #RS1 has some values that are many 1000s of m/yr below neighbors
        if filter_outliers:
            if True:
                med = malib.fast_median(v)
                mad = malib.mad(v)
                min_v = med - mad*4
                f_idx = (v < min_v).filled(False)
                if np.any(f_idx):
                    print med, mad
                    print "Outliers removed by absolute filter: (val < %0.1f)" % min_v
                    print timelib.o2dt(d[f_idx])
                    print v[f_idx]
                    v[f_idx] = np.ma.masked
            if True:
                v_idx = (~np.ma.getmaskarray(v)).nonzero()[0]
                #This tries to maintain fixed window in time
                f = filtlib.rolling_fltr(v, size=7)
                #This uses fixed number of neighbors
                f = filtlib.rolling_fltr(v[v_idx], size=7)
                #f_diff = np.abs(f - v)
                #Note: the issue is usually that the velocity values are too low
                #f_diff = f - v
                f_diff = f - v[v_idx]
                diff_thresh = 2000
                #f_idx = (f_diff > diff_thresh).filled(False)
                #f_idx = (f_diff < diff_thresh).filled(False)
                f_idx = np.zeros_like(v.data).astype(bool)
                f_idx[v_idx] = (f_diff > diff_thresh)
                if np.any(f_idx):
                    print "Outliers removed by rolling median filter: (val < %0.1f)" % diff_thresh
                    print timelib.o2dt(d[f_idx])
                    print v[f_idx]
                    v[f_idx] = np.ma.masked
    return v
Exemple #3
0
def main():

    if len(sys.argv) < 2:
        sys.exit("Usage: %s stack.npz [mask.tif]" %
                 os.path.basename(sys.argv[0]))

    #This will attempt to load cached files on disk
    load_existing = False
    #Limit spatial interpolation to input mask
    clip_to_mask = True

    #This expects a DEMStack object, see pygeotools/lib/malib.py or pygeotools/make_stack.py
    stack_fn = sys.argv[1]
    #Expects shp polygon as valid mask, in same projection as input raster
    mask_fn = sys.argv[2]

    stack = malib.DEMStack(stack_fn=stack_fn,
                           save=False,
                           trend=True,
                           med=True,
                           stats=True)
    #Get times of original obs
    t = stack.date_list_o.data
    t = t.astype(int)
    t[0] -= 0.1
    t[-1] += 0.1

    if clip_to_mask:
        m = geolib.shp2array(mask_fn, res=stack.res, extent=stack.extent)
        #Expand mask - hardcoded to 6 km
        import scipy.ndimage
        it = int(np.ceil(6000. / stack.res))
        m = ~(scipy.ndimage.morphology.binary_dilation(~m, iterations=it))
        apply_mask(stack.ma_stack, m)

    #This is used frome here on out
    test = stack.ma_stack
    test_ptp = stack.dt_stack_ptp
    test_source = np.array(stack.source)
    res = stack.res
    gt = np.copy(stack.gt)

    #Probably don't need rull-res stack
    if True:
        stride = 2
        test = test[:, ::stride, ::stride]
        test_ptp = test_ptp[::stride, ::stride]
        res *= stride
        print("Using a stride of %i (%0.1f m)" % (stride, res))
        gt[[1, 5]] *= stride

    print("Orig shape: ", test.shape)
    #Check to make sure all t have valid data
    tcount = test.reshape(test.shape[0],
                          test.shape[1] * test.shape[2]).count(axis=1)
    validt_idx = (tcount > 0).nonzero()[0]
    test = test[validt_idx]
    test_source = test_source[validt_idx]
    t = t[validt_idx]
    print("New shape: ", test.shape)

    y, x = (test.count(axis=0) > 1).nonzero()
    x = x.astype(int)
    y = y.astype(int)
    #vm_t = test.reshape(test.shape[0], test.shape[1]*test.shape[2])
    vm_t = test[:, y, x]
    vm_t_flat = vm_t.ravel()
    idx = ~np.ma.getmaskarray(vm_t_flat)
    #These are values
    VM = vm_t_flat[idx]

    #Determine scaling factors for x and y coords
    #Should be the same for both
    xy_scale = max(x.ptp(), y.ptp())
    xy_offset = min(x.min(), y.min())

    #This scales t to encourage interpolation along the time axis rather than spatial axis
    t_factor = 16.
    t_scale = t.ptp() * t_factor
    t_offset = t.min()

    xn = rangenorm(x, xy_offset, xy_scale)
    yn = rangenorm(y, xy_offset, xy_scale)
    tn = rangenorm(t, t_offset, t_scale)

    X = np.tile(xn, t.size)[idx]
    Y = np.tile(yn, t.size)[idx]
    T = np.repeat(tn, x.size)[idx]
    #These are coords
    pts = np.vstack((X, Y, T)).T

    #Step size in days
    #ti_dt = 91.3125
    #ti_dt = 121.75
    ti_dt = 365.25

    #Set min and max times for interpolation
    #ti = np.arange(t.min(), t.max(), ti_dt)
    ti_min = timelib.dt2o(datetime(2008, 1, 1))
    ti_max = timelib.dt2o(datetime(2015, 1, 1))

    #Interpolate at these times
    ti = np.arange(ti_min, ti_max, ti_dt)
    #Annual
    #ti = timelib.dt2o([datetime(2008,1,1), datetime(2009,1,1), datetime(2010,1,1), datetime(2011,1,1), datetime(2012,1,1), datetime(2013,1,1), datetime(2014,1,1), datetime(2015,1,1)])

    tin = rangenorm(ti, t_offset, t_scale)
    """
    #Never got this working efficiently, but preserved for reference
    #Radial basis function interpolation
    #Need to normalize to input cube  
    print "Running Rbf interpolation for %i points" % X.size
    rbfi = scipy.interpolate.Rbf(Xn,Yn,Tn,VM, function='linear', smooth=0.1)
    #rbfi = scipy.interpolate.Rbf(Xn,Yn,Tn,VM, function='gaussian', smooth=0.000001)
    #rbfi = scipy.interpolate.Rbf(Xn,Yn,Tn,VM, function='inverse', smooth=0.00001)
    print "Sampling result at %i points" % xin.size
    vmi_rbf = rbfi(xin, yin, tin.repeat(x.size))
    vmi_rbf_ma[:,y,x] = np.ma.fix_invalid(vmi_rbf.reshape((ti.size, x.shape[0])))
    """

    #Attempt to load cached interpolation function
    int_fn = '%s_LinearNDint_%i_%i.pck' % (os.path.splitext(stack_fn)[0],
                                           test.shape[1], test.shape[2])
    print(int_fn)
    if load_existing and os.path.exists(int_fn):
        print("Loading pickled interpolation function: %s" % int_fn)
        f = open(int_fn, 'rb')
        linNDint = pickle.load(f)
    else:
        #NearestND interpolation (fast)
        #print "Running NearestND interpolation for %i points" % X.size
        #NearNDint = scipy.interpolate.NearestNDInterpolator(pts, VM, rescale=True)
        #LinearND interpolation
        print("Running LinearND interpolation for %i points" % X.size)
        #Note: this breaks qhull for lots of input points
        linNDint = scipy.interpolate.LinearNDInterpolator(pts,
                                                          VM,
                                                          rescale=False)
        print("Saving pickled interpolation function: %s" % int_fn)
        f = open(int_fn, 'wb')
        pickle.dump(linNDint, f, protocol=2)
        f.close()

    vmi_fn = '%s_%iday.npy' % (os.path.splitext(int_fn)[0], ti_dt)
    if load_existing and os.path.exists(vmi_fn):
        print('Loading existing interpolated stack: %s' % vmi_fn)
        vmi_ma = np.ma.fix_invalid(np.load(vmi_fn)['arr_0'])
    else:
        #Once tesselation is complete, sample each timestep in parallel
        print("Sampling %i points at %i timesteps, %i total" %
              (x.size, ti.size, x.size * ti.size))
        #Prepare array to hold output
        vmi_ma = np.ma.masked_all((ti.size, test.shape[1], test.shape[2]))
        """
        #This does all points at once
        #vmi = linNDint(ptsi)
        #vmi_ma[:,y,x] = np.ma.fix_invalid(vmi.reshape((ti.size, x.shape[0])))
        #This does interpolation serially by timestep
        for n, i in enumerate(ti):
            print n, i, timelib.o2dt(i)
            vmi_ma[n,y,x] = linNDint(x, y, i.repeat(x.size)).T
        """
        #Parallel processing
        pool = mp.Pool(processes=None)
        results = [
            pool.apply_async(dto_interp, args=(linNDint, xn, yn, i))
            for i in tin
        ]
        results = [p.get() for p in results]
        results.sort()
        for n, r in enumerate(results):
            t_rescale = r[0] * t_scale + t_offset
            print(n, t_rescale, timelib.o2dt(t_rescale))
            vmi_ma[n, y, x] = r[1]

        vmi_ma = np.ma.fix_invalid(vmi_ma)
        print('Saving interpolated stack: %s' % vmi_fn)
        np.save(vmi_fn, vmi_ma.filled(np.nan))

    origt = False
    if origt:
        print("Sampling %i points at %i original timesteps" % (x.size, t.size))
        vmi_ma_origt = np.ma.masked_all((t.size, test.shape[1], test.shape[2]))
        #Parallel
        pool = mp.Pool(processes=None)
        results = [
            pool.apply_async(dto_interp, args=(linNDint, x, y, i)) for i in t
        ]
        results = [p.get() for p in results]
        results.sort()
        for n, r in enumerate(results):
            print(n, r[0], timelib.o2dt(r[0]))
            vmi_ma_origt[n, y, x] = r[1]
        vmi_ma_origt = np.ma.fix_invalid(vmi_ma_origt)
        #print 'Saving interpolated stack: %s' % vmi_fn
        #np.save(vmi_fn, vmi_ma.filled(np.nan))

    #Write out a proper stack, for use by stack_melt and flux gate mass budget
    if True:
        out_stack = deepcopy(stack)
        out_stack.stats = False
        out_stack.trend = False
        out_stack.datestack = False
        out_stack.write_stats = False
        out_stack.write_trend = False
        out_stack.write_datestack = False
        out_stack.ma_stack = vmi_ma
        out_stack.stack_fn = os.path.splitext(vmi_fn)[0] + '.npz'
        out_stack.date_list_o = np.ma.array(ti)
        out_stack.date_list = np.ma.array(timelib.o2dt(ti))
        out_fn_list = [
            timelib.print_dt(i) + '_LinearNDint.tif'
            for i in out_stack.date_list
        ]
        out_stack.fn_list = out_fn_list
        out_stack.error = np.zeros_like(out_stack.date_list_o)
        out_stack.source = np.repeat('LinearNDint', ti.size)
        out_stack.gt = gt
        out_stack.res = res
        out_stack.savestack()

    sys.exit()
    """
    #Other interpolation methods
    #vmi = scipy.interpolate.griddata(pts, VM, ptsi, method='linear', rescale=True)

    #Kriging
    #Should explore this more - likely the best option
    #http://connor-johnson.com/2014/03/20/simple-kriging-in-python/
    #http://resources.esri.com/help/9.3/arcgisengine/java/gp_toolref/geoprocessing_with_3d_analyst/using_kriging_in_3d_analyst.htm

    #PyKrige does moving window Kriging, but only in 2D
    #https://github.com/bsmurphy/PyKrige/pull/5

    #Could do tiled kriging with overlap in parallel
    #Split along x and y direction, preserve all t
    #Need to generate semivariogram globally though, then pass to each tile
    #See malib sliding_window
    wx = wy = 30
    wz = test.shape[0]
    overlap = 0.5
    dwx = dwy = int(overlap*wx)
    gp_slices = malib.nanfill(test, malib.sliding_window, ws=(wz,wy,wx), ss=(0,dwy,dwx))

    vmi_gp_ma = np.ma.masked_all((ti.size, test.shape[1], test.shape[2]))
    vmi_gp_mse_ma = np.ma.masked_all((ti.size, test.shape[1], test.shape[2]))

    out = []
    for i in gp_slices:
        y, x = (i.count(axis=0) > 0).nonzero()
        x = x.astype(int)
        y = y.astype(int)
        vm_t = test[:,y,x]
        vm_t_flat = vm_t.ravel()
        idx = ~np.ma.getmaskarray(vm_t_flat)
        #These are values
        VM = vm_t_flat[idx]

        #These are coords
        X = np.tile(x, t.size)[idx]
        Y = np.tile(y, t.size)[idx]
        T = np.repeat(t, x.size)[idx]
        pts = np.vstack((X,Y,T)).T

        xi = np.tile(x, ti.size)
        yi = np.tile(y, ti.size)
        ptsi = np.array((xi, yi, ti.repeat(x.size))).T

        #gp = GaussianProcess(regr='linear', verbose=True, normalize=True, theta0=0.1, nugget=2)
        gp = GaussianProcess(regr='linear', verbose=True, normalize=True, nugget=2)
        gp.fit(pts, VM)
        vmi_gp, vmi_gp_mse = gp.predict(ptsi, eval_MSE=True)
        vmi_gp_ma = np.ma.masked_all((ti.size, i.shape[1], i.shape[2]))
        vmi_gp_ma[:,y,x] = np.array(vmi_gp.reshape((ti.size, x.shape[0])))
        vmi_gp_mse_ma = np.ma.masked_all((ti.size, i.shape[1], i.shape[2]))
        vmi_gp_mse_ma[:,y,x] = np.array(vmi_gp_mse.reshape((ti.size, x.shape[0])))
        out.append(vmi_gp_ma)
    #Now combine intelligently

    print "Gaussian Process regression"
    pts2d_vm = vm_t[1]
    pts2d = np.vstack((x,y))[~(np.ma.getmaskarray(pts2d_vm))].T
    pts2di = np.vstack((x,y)).T
    gp = GaussianProcess(regr='linear', verbose=True, normalize=True, theta0=0.1, nugget=1)
    gp.fit(pts, VM)
    print "Gaussian Process prediction"
    vmi_gp, vmi_gp_mse = gp.predict(ptsi, eval_MSE=True)
    print "Converting to stack"
    vmi_gp_ma = np.ma.masked_all((ti.size, test.shape[1], test.shape[2]))
    vmi_gp_ma[:,y,x] = np.array(vmi_gp.reshape((ti.size, x.shape[0])))
    vmi_gp_mse_ma = np.ma.masked_all((ti.size, test.shape[1], test.shape[2]))
    vmi_gp_mse_ma[:,y,x] = np.array(vmi_gp_mse.reshape((ti.size, x.shape[0])))
    sigma = np.sqrt(vmi_gp_mse_ma)
    """
    """