def test_001_t(self):
        np.set_printoptions(precision=2)
        n_frames = 3
        alpha = .5
        active = 8
        M = 8
        K = 16
        L = 2
        cp_len = 8
        cs_len = 4
        ramp_len = 4
        block_len = M * K
        window_len = get_window_len(cp_len, M, K, cs_len)
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        taps /= np.sqrt(calculate_signal_energy(taps) / M)
        window_taps = get_raised_cosine_ramp(ramp_len, window_len)
        pn_symbols = get_random_qpsk(K)
        H_preamble = get_frequency_domain_filter('rrc', alpha, 2, K, L)
        preamble = get_sync_symbol(pn_symbols, H_preamble, K, L, cp_len,
                                   ramp_len)[0]
        smap = get_subcarrier_map(K, active, dc_free=True)

        ref = np.array([], dtype=complex)
        data = np.array([], dtype=complex)
        frame_len = window_len + len(preamble)
        frame_gap = np.zeros(frame_len)
        for i in range(n_frames):
            d = get_random_qpsk(active * M)
            dd = map_to_waveform_resources(d, active, K, smap)
            D = get_data_matrix(dd, K, group_by_subcarrier=False)
            b = gfdm_modulate_block(D, taps, M, K, L, False)
            b = add_cyclic_starfix(b, cp_len, cs_len)
            b = pinch_block(b, window_taps)
            ref = np.concatenate((ref, frame_gap, preamble, b))
            data = np.concatenate((data, d))

        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(active, K, M, smap, True)
        mod = gfdm.simple_modulator_cc(M, K, L, taps)
        prefixer = gfdm.cyclic_prefixer_cc(block_len, cp_len, cs_len, ramp_len,
                                           window_taps)
        preambler = blocks.vector_insert_c(preamble,
                                           window_len + len(preamble), 0)
        gapper = blocks.vector_insert_c(frame_gap, frame_len + len(frame_gap),
                                        0)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mapper, mod, prefixer, preambler, gapper, dst)
        # self.tb.connect(src, mapper, dst)
        self.tb.run()
        res = np.array(dst.data())[0:len(ref)]

        self.assertComplexTuplesAlmostEqual(ref, res, 5)
Exemple #2
0
    def test_001_t(self):
        np.set_printoptions(precision=2)
        n_frames = 7
        alpha = .5
        active_subcarriers = 52
        timeslots = 9
        subcarriers = 64
        overlap = 2
        cp_len = 8
        cs_len = 4
        ramp_len = 4

        window_len = get_window_len(cp_len, timeslots, subcarriers, cs_len)
        taps = get_frequency_domain_filter('rrc', alpha, timeslots,
                                           subcarriers, overlap)
        # taps /= np.sqrt(calculate_signal_energy(taps) / time)
        window_taps = get_raised_cosine_ramp(ramp_len, window_len)
        pn_symbols = get_random_qpsk(subcarriers)
        H_preamble = get_frequency_domain_filter('rrc', alpha, 2,
                                                 subcarriers, overlap)
        preamble = get_sync_symbol(pn_symbols, H_preamble, subcarriers,
                                   overlap, cp_len, ramp_len)[0]
        smap = get_subcarrier_map(subcarriers, active_subcarriers, True)

        ref = np.array([], dtype=np.complex)
        data = np.array([], dtype=np.complex)

        for i in range(n_frames):
            d = get_random_qpsk(active_subcarriers * timeslots)
            dd = map_to_waveform_resources(d, active_subcarriers,
                                           subcarriers, smap)
            D = get_data_matrix(dd, subcarriers, group_by_subcarrier=False)
            b = gfdm_modulate_block(D, taps, timeslots, subcarriers,
                                    overlap, False)
            b = add_cyclic_starfix(b, cp_len, cs_len)
            b = pinch_block(b, window_taps)
            ref = np.concatenate((ref, preamble, b))
            data = np.concatenate((data, d))

        src = blocks.vector_source_c(data)
        dut = gfdm.transmitter_cc(timeslots, subcarriers, active_subcarriers,
                                  cp_len, cs_len, ramp_len, smap, True,
                                  overlap, taps, window_taps, preamble, "packet_len")
        dst = blocks.vector_sink_c()

        self.tb.connect(src, dut, dst)
        self.tb.run()
        res = np.array(dst.data())[0:len(ref)]
        self.assertComplexTuplesAlmostEqual(ref, res, 5)

        tags = dst.tags()
        for t in tags:
            print(t.offset, t.value)
    def test_001_t(self):
        np.set_printoptions(precision=2)
        n_frames = 3
        alpha = .5
        active = 8
        M = 8
        K = 16
        L = 2
        cp_len = 8
        cs_len = 4
        ramp_len = 4
        block_len = M * K
        window_len = get_window_len(cp_len, M, K, cs_len)
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        taps /= np.sqrt(calculate_signal_energy(taps) / M)
        window_taps = get_raised_cosine_ramp(ramp_len, window_len)
        pn_symbols = get_random_qpsk(K)
        H_preamble = get_frequency_domain_filter('rrc', alpha, 2, K, L)
        preamble = get_sync_symbol(pn_symbols, H_preamble, K, L, cp_len, ramp_len)[0]
        smap = get_subcarrier_map(K, active, dc_free=True)

        ref = np.array([], dtype=np.complex)
        data = np.array([], dtype=np.complex)
        frame_len = window_len + len(preamble)
        frame_gap = np.zeros(frame_len)
        for i in range(n_frames):
            d = get_random_qpsk(active * M)
            dd = map_to_waveform_resources(d, active, K, smap)
            D = get_data_matrix(dd, K, group_by_subcarrier=False)
            b = gfdm_modulate_block(D, taps, M, K, L, False)
            b = add_cyclic_starfix(b, cp_len, cs_len)
            b = pinch_block(b, window_taps)
            ref = np.concatenate((ref, frame_gap, preamble, b))
            data = np.concatenate((data, d))

        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(active, K, M, smap, True)
        mod = gfdm.simple_modulator_cc(M, K, L, taps)
        prefixer = gfdm.cyclic_prefixer_cc(block_len, cp_len, cs_len, ramp_len, window_taps)
        preambler = blocks.vector_insert_c(preamble, window_len + len(preamble), 0)
        gapper = blocks.vector_insert_c(frame_gap, frame_len + len(frame_gap), 0)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mapper, mod, prefixer, preambler, gapper, dst)
        # self.tb.connect(src, mapper, dst)
        self.tb.run()
        res = np.array(dst.data())[0:len(ref)]

        self.assertComplexTuplesAlmostEqual(ref, res, 5)
Exemple #4
0
    def test_003_active_subcarriers(self):
        n_frames = 1
        timeslots = 9
        subcarriers = 32
        active_subcarriers = 20
        overlap = 2
        f_taps = filters.get_frequency_domain_filter('rrc', .5, timeslots,
                                                     subcarriers, overlap)
        gfdm_constellation = digital.constellation_qpsk().base()
        subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)

        data = get_random_qpsk(n_frames * timeslots * active_subcarriers)
        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(timeslots, subcarriers,
                                         active_subcarriers, subcarrier_map,
                                         True)
        mod = gfdm.simple_modulator_cc(timeslots, subcarriers, overlap, f_taps)
        demod = gfdm.advanced_receiver_sb_cc(timeslots, subcarriers, overlap,
                                             64, f_taps, gfdm_constellation,
                                             subcarrier_map, 0)
        demapper = gfdm.resource_demapper_cc(timeslots, subcarriers,
                                             active_subcarriers,
                                             subcarrier_map, True)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, mapper, mod, demod, demapper, snk)
        self.tb.run()

        res = np.array(snk.data())
        self.assertComplexTuplesAlmostEqual(data, res, 2)
Exemple #5
0
    def test_005_steps(self):
        timeslots = 5
        subcarriers = 32
        overlap = 2
        filter_alpha = 0.35

        taps = get_frequency_domain_filter('rrc', filter_alpha,
                                           timeslots, subcarriers,
                                           overlap)

        data = get_random_qpsk(timeslots * subcarriers)
        D = get_data_matrix(data, subcarriers, group_by_subcarrier=False)
        frame = gfdm_modulate_block(D, taps, timeslots, subcarriers,
                                    overlap, False)
        ref = gfdm_demodulate_block(
            frame, taps, subcarriers, timeslots, overlap)

        demod = Demodulator(timeslots, subcarriers, overlap, taps)
        fd_res = demod.fft_filter_downsample(frame)
        res = demod.transform_subcarriers_to_td(fd_res)

        self.assertComplexTuplesAlmostEqual(ref, res, 5)

        for _ in range(2):
            ic_res = demod.cancel_sc_interference(data, fd_res)
            res = demod.transform_subcarriers_to_td(ic_res)

        self.assertComplexTuplesAlmostEqual(data, res, 1)
    def test_001_t(self):
        alpha = .5
        M = 8
        K = 4
        L = 2
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        taps /= np.sqrt(calculate_signal_energy(taps) / M)
        # data = np.repeat(np.arange(1, K + 1), M)
        data = get_random_qpsk(M * K)
        D = get_data_matrix(data, K, group_by_subcarrier=False)

        src = blocks.vector_source_c(data)
        mod = gfdm.simple_modulator_cc(M, K, L, taps)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mod, dst)
        # set up fg
        self.tb.run()
        # check data
        res = np.array(dst.data())
        # res /= M * K

        # F = gfdm_transform_subcarriers_to_fd(D, M)
        # F = gfdm_upsample_subcarriers_in_fd(F, K, L)
        # F = gfdm_filter_subcarriers_in_fd(F, taps, M, K, L)

        ref = gfdm_modulate_block(D, taps, M, K, L, False)

        self.assertComplexTuplesAlmostEqual(ref, res, 5)
    def test_002_big_data(self):
        print "big data test"
        reps = 5
        alpha = .5
        M = 127
        K = 16
        L = 4
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        data = np.array([], dtype=np.complex)
        ref = np.array([], dtype=np.complex)
        for i in range(reps):
            d = get_random_qpsk(M * K)
            D = get_data_matrix(d, K, group_by_subcarrier=False)
            ref = np.append(ref, gfdm_modulate_block(D, taps, M, K, L, False))
            data = np.append(data, d)
        # print data
        # print ref
        # print "MAXIMUM ref value: ", np.max(abs(ref))

        src = blocks.vector_source_c(data)
        mod = gfdm.simple_modulator_cc(M, K, L, taps)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mod, dst)
        # set up fg
        self.tb.run()
        # check data
        res = np.array(dst.data())
        # res /= M * K
        # print "MAXIMUM result value: ", np.max(abs(res))

        self.assertComplexTuplesAlmostEqual(ref, res, 2)
    def test_001_t(self):
        alpha = .5
        M = 8
        K = 4
        L = 2
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        # data = np.repeat(np.arange(1, K + 1), M)
        data = get_random_qpsk(M * K)
        D = get_data_matrix(data, K, group_by_subcarrier=False)
        # print data
        # print D
        src = blocks.vector_source_c(data)
        mod = gfdm.simple_modulator_cc(M, K, L, taps)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mod, dst)
        # set up fg
        self.tb.run()
        # check data
        res = np.array(dst.data())
        # res /= M * K

        # F = gfdm_transform_subcarriers_to_fd(D, M)
        # F = gfdm_upsample_subcarriers_in_fd(F, K, L)
        # F = gfdm_filter_subcarriers_in_fd(F, taps, M, K, L)

        ref = gfdm_modulate_block(D, taps, M, K, L, False)

        self.assertComplexTuplesAlmostEqual(ref, res, 5)
Exemple #9
0
    def test_001_simple_receiver(self):
        # make sure advanced receiver works like simple receiver in case no IC iterations are applied!
        reps = 5
        alpha = .5
        M = 127
        K = 16
        L = 2
        taps = filters.get_frequency_domain_filter('rrc', alpha, M, K, L)
        data = np.array([], dtype=np.complex)
        ref = np.array([], dtype=np.complex)
        for i in xrange(reps):
            d = utils.get_random_qpsk(M * K)
            ref = np.append(ref, gfdm_demodulate_block(d, taps, K, M, L))
            data = np.append(data, d)
        # print data
        # print ref
        # print "MAXIMUM ref value: ", np.max(abs(ref))

        src = blocks.vector_source_c(data)
        est_data = np.ones(len(data), dtype=np.complex)
        est_src = blocks.vector_source_c(est_data)
        gfdm_constellation = digital.constellation_qpsk().base()
        mod = gfdm.advanced_receiver_sb_cc(M, K, L, 0, taps,
                                           gfdm_constellation, np.arange(K), 0)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, (mod, 0), dst)
        self.tb.connect(est_src, (mod, 1))
        # set up fg
        self.tb.run()
        # check data
        res = np.array(dst.data())

        self.assertComplexTuplesAlmostEqual(ref, res, 4)
    def test_002_big_data(self):
        print("big data test")
        reps = 5
        alpha = .5
        M = 127
        K = 16
        L = 4
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        taps /= np.sqrt(calculate_signal_energy(taps) / M)
        data = np.array([], dtype=complex)
        ref = np.array([], dtype=complex)
        for i in range(reps):
            d = get_random_qpsk(M * K)
            D = get_data_matrix(d, K, group_by_subcarrier=False)
            ref = np.append(ref, gfdm_modulate_block(D, taps, M, K, L, False))
            data = np.append(data, d)

        src = blocks.vector_source_c(data)
        mod = gfdm.simple_modulator_cc(M, K, L, taps)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mod, dst)
        # set up fg
        self.tb.run()
        # check data
        res = np.array(dst.data())
        # res /= M * K

        self.assertComplexTuplesAlmostEqual(ref, res, 2)
    def test_001_simple_receiver(self):
        # make sure advanced receiver works like simple receiver in case no IC iterations are applied!
        reps = 5
        alpha = .5
        M = 127
        K = 16
        L = 2
        taps = filters.get_frequency_domain_filter('rrc', alpha, M, K, L)
        data = np.array([], dtype=np.complex)
        ref = np.array([], dtype=np.complex)
        for i in xrange(reps):
            d = utils.get_random_qpsk(M * K)
            ref = np.append(ref, gfdm_demodulate_block(d, taps, K, M, L))
            data = np.append(data, d)
        # print data
        # print ref
        # print "MAXIMUM ref value: ", np.max(abs(ref))

        src = blocks.vector_source_c(data)
        est_data = np.ones(len(data), dtype=np.complex)
        est_src = blocks.vector_source_c(est_data)
        gfdm_constellation = digital.constellation_qpsk().base()
        mod = gfdm.advanced_receiver_sb_cc(M, K, L, 0,
                                           taps, gfdm_constellation, np.arange(K))
        dst = blocks.vector_sink_c()

        self.tb.connect(src, (mod, 0), dst)
        self.tb.connect(est_src, (mod, 1))
        # set up fg
        self.tb.run()
        # check data
        res = np.array(dst.data())

        self.assertComplexTuplesAlmostEqual(ref, res, 4)
 def test_002_t(self):
     n_frames = 1
     self.gfdm_var = gfdm_var = struct({'subcarriers': 64, 'timeslots': 9, 'alpha': 0.5, 'overlap': 2,})
     self.gfdm_constellation = gfdm_constellation = digital.constellation_qpsk().base()
     self.f_taps = f_taps = filters.get_frequency_domain_filter('rrc', 1.0, gfdm_var.timeslots, gfdm_var.subcarriers,
                                                                gfdm_var.overlap)
     self.random_bits = blocks.vector_source_b(map(int, np.random.randint(0, len(gfdm_constellation.points()),
                                                                             n_frames * gfdm_var.timeslots * gfdm_var.subcarriers)),
                                               False)
     self.bits_to_symbols = digital.chunks_to_symbols_bc((gfdm_constellation.points()), 1)
     self.mod = gfdm.simple_modulator_cc(gfdm_var.timeslots, gfdm_var.subcarriers, gfdm_var.overlap, f_taps)
     self.demod = gfdm.advanced_receiver_sb_cc(gfdm_var.timeslots, gfdm_var.subcarriers, gfdm_var.overlap, 64,
                                               f_taps, gfdm_constellation, np.arange(gfdm_var.subcarriers))
     self.tx_symbols = blocks.vector_sink_c()
     self.rx_symbols = blocks.vector_sink_c()
     self.tb.connect((self.random_bits, 0), (self.bits_to_symbols, 0))
     self.tb.connect((self.bits_to_symbols, 0), (self.tx_symbols, 0))
     self.tb.connect((self.bits_to_symbols, 0), (self.mod, 0))
     self.tb.connect((self.mod, 0), (self.demod, 0))
     self.tb.connect((self.demod, 0), (self.rx_symbols, 0))
     self.tb.run()
     ref = np.array(self.tx_symbols.data())
     res = np.array(self.rx_symbols.data())
     # more or less make sure all symbols have their correct sign.
     self.assertComplexTuplesAlmostEqual(ref, res, 2)
    def test_002_big_data(self):
        print("big data test")
        reps = 5
        alpha = .5
        M = 127
        K = 16
        L = 2
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        data = np.array([], dtype=np.complex)
        ref = np.array([], dtype=np.complex)
        for i in xrange(reps):
            d = get_random_qpsk(M * K)
            ref = np.append(ref, gfdm_demodulate_block(d, taps, K, M, L))
            data = np.append(data, d)
        # print data
        # print ref
        # print "MAXIMUM ref value: ", np.max(abs(ref))

        src = blocks.vector_source_c(data)
        mod = gfdm.simple_receiver_cc(M, K, L, taps)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mod, dst)
        # set up fg
        self.tb.run()
        # check data
        res = np.array(dst.data())

        self.assertComplexTuplesAlmostEqual(ref, res, 4)
    def test_002_big_data(self):
        print("big data test")
        reps = 5
        alpha = .5
        M = 127
        K = 16
        L = 2
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        data = np.array([], dtype=complex)
        ref = np.array([], dtype=complex)
        for i in range(reps):
            d = get_random_qpsk(M * K)
            ref = np.append(ref, gfdm_demodulate_block(d, taps, K, M, L))
            data = np.append(data, d)

        src = blocks.vector_source_c(data)
        mod = gfdm.simple_receiver_cc(M, K, L, taps)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mod, dst)
        # set up fg
        self.tb.run()
        # check data
        res = np.array(dst.data())

        self.assertComplexTuplesAlmostEqual(ref, res, 4)
Exemple #15
0
    def test_001_t(self):
        nsubcarrier = 4
        ntimeslots = 16
        filter_alpha = 0.35
        tag_key = "frame_len"
        fft_length = nsubcarrier * ntimeslots
        taps = get_frequency_domain_filter('rrc', filter_alpha, ntimeslots,
                                           nsubcarrier, 2)

        data = get_random_qpsk(nsubcarrier * ntimeslots)
        D = get_data_matrix(data, nsubcarrier, group_by_subcarrier=False)
        print D

        md = gfdms.modulator_cc(nsubcarrier, ntimeslots, filter_alpha,
                                fft_length, 1, tag_key)
        tagger = blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, 1,
                                                fft_length, tag_key)
        src = blocks.vector_source_c(data)
        dst = blocks.vector_sink_c()
        self.tb.connect(src, tagger, md, dst)
        self.tb.run()

        res = np.array(dst.data())
        print res
        ref = gfdm_modulate_block(D, taps, ntimeslots, nsubcarrier, 2, True)
        print ref

        self.assertComplexTuplesAlmostEqual(ref, res, 2)
Exemple #16
0
    def test_001_t(self):
        nsubcarrier = 4
        ntimeslots = 16
        filter_alpha = 0.35
        tag_key = "frame_len"
        fft_length = nsubcarrier * ntimeslots
        taps = get_frequency_domain_filter('rrc', filter_alpha, ntimeslots, nsubcarrier, 2)

        data = get_random_qpsk(nsubcarrier * ntimeslots)
        # data = np.zeros(nsubcarrier)
        # data[0] = 1
        # data = np.repeat(data, ntimeslots)
        D = get_data_matrix(data, nsubcarrier, group_by_subcarrier=False)
        print D

        md = gfdms.modulator_cc(nsubcarrier, ntimeslots, filter_alpha, fft_length, 1, tag_key)
        tagger = blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, 1, fft_length, tag_key)
        src = blocks.vector_source_c(data)
        dst = blocks.vector_sink_c()
        self.tb.connect(src, tagger, md, dst)
        self.tb.run()

        res = np.array(dst.data())
        print res
        ref = gfdm_modulate_block(D, taps, ntimeslots, nsubcarrier, 2, True)
        print ref

        self.assertComplexTuplesAlmostEqual(ref, res, 2)
Exemple #17
0
    def test_001_t(self):
        np.set_printoptions(precision=2)
        n_frames = 7
        active_subcarriers = 52
        timeslots = 9
        subcarriers = 64
        cp_len = subcarriers // 4
        cs_len = cp_len // 2

        taps = get_frequency_domain_filter(self.filter_type, self.alpha,
                                           timeslots, subcarriers,
                                           self.overlap)

        window_taps = get_raised_cosine_ramp(
            cs_len, get_window_len(cp_len, timeslots, subcarriers, cs_len))

        smap = get_subcarrier_map(subcarriers, active_subcarriers, True)
        preambles = get_full_preambles(self.filter_type, self.alpha,
                                       active_subcarriers, subcarriers, smap,
                                       self.overlap, cp_len, cs_len, [
                                           0,
                                       ])

        frame_size = preambles[
            0].size + cp_len + timeslots * subcarriers + cs_len

        ref = np.array([], dtype=np.complex)
        data = np.array([], dtype=np.complex)

        for i in range(n_frames):
            d = get_random_qpsk(active_subcarriers * timeslots)
            frame = generate_reference_frame(d, timeslots, subcarriers,
                                             active_subcarriers, smap, taps,
                                             self.overlap, cp_len, cs_len,
                                             window_taps, [
                                                 0,
                                             ], preambles)

            ref = np.concatenate((ref, frame[0]))
            data = np.concatenate((data, d))

        src = blocks.vector_source_c(data)
        dut = gfdm.transmitter_cc(timeslots, subcarriers, active_subcarriers,
                                  cp_len, cs_len, cs_len, smap, True,
                                  self.overlap, taps, window_taps, [
                                      0,
                                  ], preambles, "packet_len")
        dst = blocks.vector_sink_c()

        self.tb.connect(src, dut, dst)
        self.tb.run()
        res = np.array(dst.data())[0:len(ref)]
        self.assertComplexTuplesAlmostEqual(ref, res, 5)

        tags = dst.tags()
        for i, t in enumerate(tags):
            print(f't={i}, offset={t.offset}, value={pmt.to_python(t.value)}')
            self.assertEqual(t.offset, i * frame_size)
            self.assertEqual(pmt.to_python(t.value), frame_size)
Exemple #18
0
    def test_002_cyclic_delay_diversity(self):
        np.set_printoptions(precision=2)
        n_frames = 7
        active_subcarriers = 52
        timeslots = 9
        subcarriers = 64
        cp_len = subcarriers // 4
        cs_len = cp_len // 2
        cyclic_shifts = [0, 3, 7, 8]

        taps = get_frequency_domain_filter(self.filter_type, self.alpha, timeslots,
                                           subcarriers, self.overlap)

        window_taps = get_raised_cosine_ramp(
            cs_len, get_window_len(cp_len, timeslots, subcarriers, cs_len))

        smap = get_subcarrier_map(subcarriers, active_subcarriers, True)
        preambles = get_full_preambles(self.filter_type, self.alpha, active_subcarriers,
                                       subcarriers, smap, self.overlap, cp_len, cs_len, cyclic_shifts)

        frame_size = preambles[0].size + cp_len + timeslots * subcarriers + cs_len

        ref = [np.array([], dtype=complex) for _ in cyclic_shifts]
        data = np.array([], dtype=complex)

        for i in range(n_frames):
            d = get_random_qpsk(active_subcarriers * timeslots)
            frame = generate_reference_frame(d, timeslots, subcarriers, active_subcarriers, smap,
                                             taps, self.overlap, cp_len, cs_len, window_taps,
                                             cyclic_shifts, preambles)

            ref = [np.concatenate((r, f)) for r, f in zip(ref, frame)]
            data = np.concatenate((data, d))

        src = blocks.vector_source_c(data)
        dut = gfdm.transmitter_cc(timeslots, subcarriers, active_subcarriers,
                                  cp_len, cs_len, cs_len, smap, True,
                                  self.overlap, taps, window_taps, cyclic_shifts, preambles, "packet_len")
        snks = [blocks.vector_sink_c() for _ in cyclic_shifts]

        self.tb.connect(src, dut)
        for i, s in enumerate(snks):
            self.tb.connect((dut, i), s)
        self.tb.run()

        for snk, refport in zip(snks, ref):
            res = np.array(snk.data())[0:refport.size]
            self.assertComplexTuplesAlmostEqual(refport, res, 5)

        for j, snk in enumerate(snks):
            tags = snk.tags()
            for i, t in enumerate(tags):
                print(f'p={j}, t={i}, offset={t.offset}, value={pmt.to_python(t.value)}')
                self.assertEqual(t.offset, i * frame_size)
                self.assertEqual(pmt.to_python(t.value), frame_size)
 def test_004_setIC(self):
     ic = 2
     timeslots = 9
     subcarriers = 32
     active_subcarriers = 20
     overlap = 2
     f_taps = filters.get_frequency_domain_filter('rrc', .5, timeslots, subcarriers, overlap)
     gfdm_constellation = digital.constellation_qpsk().base()
     subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)
     demod = gfdm.advanced_receiver_sb_cc(timeslots, subcarriers, overlap, 64, f_taps, gfdm_constellation, subcarrier_map)
     demod.set_ic(ic)
     self.assertEqual(ic, demod.get_ic())
Exemple #20
0
def modulator_test():
    fft_len = 128
    timeslots = 205
    overlap = 2
    taps = get_frequency_domain_filter('rrc', .5, timeslots, fft_len, overlap)
    kernel = cgfdm.py_modulator_kernel_cc(timeslots, fft_len, overlap, taps)

    N = 10
    for i in range(N):
        data = np.random.randn(2, fft_len * timeslots)
        data = data[0] + 1j * data[1]
        data = data.astype(dtype=np.complex64)
        kernel.modulate(data)
Exemple #21
0
def modulator_test():
    fft_len = 128
    timeslots = 205
    overlap = 2
    taps = get_frequency_domain_filter('rrc', .5, timeslots, fft_len, overlap)
    kernel = cgfdm.py_modulator_kernel_cc(timeslots, fft_len, overlap, taps)

    N = 10
    for i in range(N):
        data = np.random.randn(2, fft_len * timeslots)
        data = data[0] + 1j * data[1]
        data = data.astype(dtype=np.complex64)
        kernel.modulate(data)
    def test_001_t(self):
        np.set_printoptions(precision=2)
        n_frames = 3
        alpha = .5
        M = 8
        K = 4
        L = 2
        cp_len = 8
        ramp_len = 4
        block_len = M * K
        window_len = get_window_len(cp_len, M, K)
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        window_taps = get_raised_cosine_ramp(ramp_len, window_len)
        pn_symbols = get_random_qpsk(K)
        H_preamble = get_frequency_domain_filter('rrc', alpha, 2, K, L)
        preamble = get_sync_symbol(pn_symbols, H_preamble, K, L, cp_len, ramp_len)

        ref = np.array([], dtype=np.complex)
        data = np.array([], dtype=np.complex)
        for i in range(n_frames):
            d = get_random_qpsk(block_len)
            D = get_data_matrix(d, K, group_by_subcarrier=False)
            b = gfdm_modulate_block(D, taps, M, K, L, False)
            b = add_cyclic_prefix(b, cp_len)
            b = pinch_block(b, window_taps)
            ref = np.concatenate((ref, preamble, b))
            data = np.concatenate((data, d))

        src = blocks.vector_source_c(data)
        mod = gfdm.simple_modulator_cc(M, K, L, taps)
        prefixer = gfdm.cyclic_prefixer_cc(cp_len, ramp_len, block_len, window_taps)
        preambler = blocks.vector_insert_c(preamble, window_len + len(preamble), 0)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mod, prefixer, preambler, dst)
        self.tb.run()
        res = np.array(dst.data())[0:len(ref)]

        self.assertComplexTuplesAlmostEqual(ref, res, 5)
def modulate_gfdm_frame(tx_symbols, params):
    mapper = cgfdm.py_resource_mapper_kernel_cc(params['timeslots'], params['fft_len'], params['active_subcarriers'],
                                               params['subcarrier_map'])
    taps = get_frequency_domain_filter(params['prototype_type'], params['prototype_alpha'], params['timeslots'],
                                       params['fft_len'], params['overlap'])
    kernel = cgfdm.py_modulator_kernel_cc(params['timeslots'], params['fft_len'], params['overlap'], taps)
    win_filt = get_raised_cosine_ramp(params['filter_len'], params['timeslots'] * params['fft_len'] + params['cp_len'])
    cpler = cgfdm.py_add_cyclic_prefix_cc(params['timeslots'] * params['fft_len'], params['cp_len'], params['filter_len'],
                                         win_filt)

    syms = mapper.map_to_resources(tx_symbols)
    frame = kernel.modulate(syms.flatten())
    frame = cpler.add_cyclic_prefix(frame)
    return frame
Exemple #24
0
def modulate_gfdm_frame(tx_symbols, params):
    mapper = cgfdm.py_resource_mapper_kernel_cc(params['timeslots'], params['fft_len'], params['active_subcarriers'],
                                               params['subcarrier_map'])
    taps = get_frequency_domain_filter(params['prototype_type'], params['prototype_alpha'], params['timeslots'],
                                       params['fft_len'], params['overlap'])
    kernel = cgfdm.py_modulator_kernel_cc(params['timeslots'], params['fft_len'], params['overlap'], taps)
    win_filt = get_raised_cosine_ramp(params['filter_len'], params['timeslots'] * params['fft_len'] + params['cp_len'])
    cpler = cgfdm.py_add_cyclic_prefix_cc(params['timeslots'] * params['fft_len'], params['cp_len'], params['filter_len'],
                                         win_filt)

    syms = mapper.map_to_resources(tx_symbols)
    frame = kernel.modulate(syms.flatten())
    frame = cpler.add_cyclic_prefix(frame)
    return frame
Exemple #25
0
 def test_004_setIC(self):
     ic = 2
     timeslots = 9
     subcarriers = 32
     active_subcarriers = 20
     overlap = 2
     f_taps = filters.get_frequency_domain_filter('rrc', .5, timeslots,
                                                  subcarriers, overlap)
     gfdm_constellation = digital.constellation_qpsk().base()
     subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)
     demod = gfdm.advanced_receiver_sb_cc(timeslots, subcarriers, overlap,
                                          64, f_taps, gfdm_constellation,
                                          subcarrier_map, 0)
     demod.set_ic(ic)
     self.assertEqual(ic, demod.get_ic())
Exemple #26
0
    def test_001_init(self):
        timeslots = 25
        subcarriers = 96
        overlap = 2
        filter_alpha = 0.35

        taps = get_frequency_domain_filter("rrc", filter_alpha, timeslots,
                                           subcarriers, overlap)

        demod = Demodulator(timeslots, subcarriers, overlap, taps)
        self.assertEqual(timeslots, demod.timeslots())
        self.assertEqual(subcarriers, demod.subcarriers())
        self.assertEqual(overlap, demod.overlap())
        self.assertEqual(timeslots * subcarriers, demod.block_size())
        self.assertComplexTuplesAlmostEqual(taps, demod.filter_taps())
Exemple #27
0
    def test_002_fd_filter(self):
        self.params.K = 64
        self.params.Kon = 52
        self.params.Non = self.params.Kon * self.params.Mon
        self.params.N = self.params.K * self.params.M
        self.params.pulse = 'rrc'
        taps = vc.gfdmutil.get_transmitter_pulse(self.params)

        g2 = taps[::self.params.K // self.params.L]
        G2 = np.fft.fft(g2)

        freq_taps = get_frequency_domain_filter('rrc', self.params.a,
                                                self.params.M, self.params.K,
                                                self.params.L)
        freq_taps *= np.abs(G2[0]) / np.abs(freq_taps[0])
        self.assertTrue(np.all(np.abs(freq_taps - G2) < 1e-3))
    def test_002_fd_filter(self):
        self.params.K = 64
        self.params.Kon = 52
        self.params.Non = self.params.Kon * self.params.Mon
        self.params.N = self.params.K * self.params.M
        self.params.pulse = 'rrc'
        taps = vc.gfdmutil.get_transmitter_pulse(self.params)

        g2 = taps[::self.params.K // self.params.L]
        G2 = np.fft.fft(g2)

        freq_taps = get_frequency_domain_filter('rrc',
                                                self.params.a, self.params.M,
                                                self.params.K, self.params.L)
        freq_taps *= np.abs(G2[0]) / np.abs(freq_taps[0])
        self.assertTrue(np.all(np.abs(freq_taps - G2) < 1e-3))
 def test_002_t(self):
     n_frames = 1
     gfdm_var = struct({
         "subcarriers": 64,
         "timeslots": 9,
         "alpha": 0.5,
         "overlap": 2,
     })
     gfdm_constellation = digital.constellation_qpsk().base()
     self.f_taps = f_taps = filters.get_frequency_domain_filter(
         "rrc", 1.0, gfdm_var.timeslots, gfdm_var.subcarriers,
         gfdm_var.overlap)
     source_bits = np.random.randint(
         0,
         len(gfdm_constellation.points()),
         n_frames * gfdm_var.timeslots * gfdm_var.subcarriers,
     ).astype(np.uint8)
     self.random_bits = blocks.vector_source_b(source_bits, False)
     self.bits_to_symbols = digital.chunks_to_symbols_bc(
         (gfdm_constellation.points()), 1)
     self.mod = gfdm.simple_modulator_cc(gfdm_var.timeslots,
                                         gfdm_var.subcarriers,
                                         gfdm_var.overlap, f_taps)
     self.demod = gfdm.advanced_receiver_sb_cc(
         gfdm_var.timeslots,
         gfdm_var.subcarriers,
         gfdm_var.overlap,
         64,
         f_taps,
         gfdm_constellation,
         np.arange(gfdm_var.subcarriers),
         0,
     )
     self.tx_symbols = blocks.vector_sink_c()
     self.rx_symbols = blocks.vector_sink_c()
     self.tb.connect((self.random_bits, 0), (self.bits_to_symbols, 0))
     self.tb.connect((self.bits_to_symbols, 0), (self.tx_symbols, 0))
     self.tb.connect((self.bits_to_symbols, 0), (self.mod, 0))
     self.tb.connect((self.mod, 0), (self.demod, 0))
     self.tb.connect((self.demod, 0), (self.rx_symbols, 0))
     self.tb.run()
     ref = np.array(self.tx_symbols.data())
     res = np.array(self.rx_symbols.data())
     # more or less make sure all symbols have their correct sign.
     self.assertComplexTuplesAlmostEqual(ref, res, 2)
Exemple #30
0
    def test_002_big(self):
        timeslots = 21
        subcarriers = 128
        overlap = 2
        filter_alpha = 0.35

        taps = get_frequency_domain_filter("rrc", filter_alpha, timeslots,
                                           subcarriers, overlap)

        data = get_random_qpsk(timeslots * subcarriers)
        D = get_data_matrix(data, subcarriers, group_by_subcarrier=False)

        ref = gfdm_modulate_block(D, taps, timeslots, subcarriers, overlap,
                                  False)

        mod = Modulator(timeslots, subcarriers, overlap, taps)
        res = mod.modulate(data)

        self.assertComplexTuplesAlmostEqual(ref, res, 5)
    def test_004_active_subcarriers(self):
        n_frames = 1
        timeslots = 9
        subcarriers = 32
        active_subcarriers = 20
        overlap = 2
        ic_iterations = 64
        f_taps = filters.get_frequency_domain_filter("rrc", 0.5, timeslots,
                                                     subcarriers, overlap)
        gfdm_constellation = digital.constellation_qpsk().base()
        print(gfdm_constellation.points())
        subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)

        data = get_random_qpsk(n_frames * timeslots * active_subcarriers)
        data *= 2.0
        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(timeslots, subcarriers,
                                         active_subcarriers, subcarrier_map,
                                         True)
        mod = gfdm.simple_modulator_cc(timeslots, subcarriers, overlap, f_taps)
        demod = gfdm.advanced_receiver_sb_cc(
            timeslots,
            subcarriers,
            overlap,
            ic_iterations,
            f_taps,
            gfdm_constellation,
            subcarrier_map,
            0,
        )
        demod.set_ic(64)
        demapper = gfdm.resource_demapper_cc(timeslots, subcarriers,
                                             active_subcarriers,
                                             subcarrier_map, True)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, mapper, mod, demod, demapper, snk)
        self.tb.run()

        res = np.array(snk.data())
        print(data[0:10])
        print(res[0:10])
        self.assertComplexTuplesAlmostEqual(data, res, 1)
Exemple #32
0
    def test_002_small(self):
        timeslots = 16
        subcarriers = 4
        overlap = 2
        filter_alpha = 0.35

        taps = get_frequency_domain_filter("rrc", filter_alpha, timeslots,
                                           subcarriers, overlap)

        data = get_random_qpsk(timeslots * subcarriers)
        D = get_data_matrix(data, subcarriers, group_by_subcarrier=False)
        frame = gfdm_modulate_block(D, taps, timeslots, subcarriers, overlap,
                                    False)
        ref = gfdm_demodulate_block(frame, taps, subcarriers, timeslots,
                                    overlap)

        demod = Demodulator(timeslots, subcarriers, overlap, taps)
        res = demod.demodulate(frame)

        self.assertComplexTuplesAlmostEqual(ref, res, 6)
    def test_001_t(self):
        alpha = .5
        M = 8
        K = 4
        L = 2
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        taps /= np.sqrt(calculate_signal_energy(taps) / M)
        data = get_random_qpsk(M * K)
        src = blocks.vector_source_c(data)
        mod = gfdm.simple_receiver_cc(M, K, L, taps)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mod, dst)
        self.tb.run()
        res = np.array(dst.data())

        ref = gfdm_demodulate_block(data, taps, K, M, L)
        res *= np.sqrt(
            calculate_signal_energy(ref) / calculate_signal_energy(res))
        self.assertComplexTuplesAlmostEqual(ref, res, 5)
    def test_001_t(self):
        alpha = .5
        M = 8
        K = 4
        L = 2
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        taps /= np.sqrt(calculate_signal_energy(taps) / M)
        data = get_random_qpsk(M * K)
        src = blocks.vector_source_c(data)
        mod = gfdm.simple_receiver_cc(M, K, L, taps)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mod, dst)
        self.tb.run()
        res = np.array(dst.data())

        ref = gfdm_demodulate_block(data, taps, K, M, L)
        # print calculate_signal_energy(ref), calculate_signal_energy(res)
        res *= np.sqrt(calculate_signal_energy(ref) / calculate_signal_energy(res))
        self.assertComplexTuplesAlmostEqual(ref, res, 5)
Exemple #35
0
    def test_004_big_equalize(self):
        timeslots = 21
        subcarriers = 128
        overlap = 2
        filter_alpha = 0.35

        taps = get_frequency_domain_filter("rrc", filter_alpha, timeslots,
                                           subcarriers, overlap)

        data = get_random_qpsk(timeslots * subcarriers)
        D = get_data_matrix(data, subcarriers, group_by_subcarrier=False)
        frame = gfdm_modulate_block(D, taps, timeslots, subcarriers, overlap,
                                    False)
        ref = gfdm_demodulate_block(frame, taps, subcarriers, timeslots,
                                    overlap)
        eq_vals = np.ones(ref.size, ref.dtype) * np.exp(1.0j)

        demod = Demodulator(timeslots, subcarriers, overlap, taps)
        res = demod.demodulate_equalize(frame * np.exp(1.0j), eq_vals)

        self.assertComplexTuplesAlmostEqual(ref, res, 5)
    def test_003_active_subcarriers(self):
        n_frames = 1
        timeslots = 9
        subcarriers = 32
        active_subcarriers = 20
        overlap = 2
        f_taps = filters.get_frequency_domain_filter('rrc', .5, timeslots, subcarriers, overlap)
        gfdm_constellation = digital.constellation_qpsk().base()
        subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)

        data = get_random_qpsk(n_frames * timeslots * active_subcarriers)
        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(timeslots, subcarriers, active_subcarriers, subcarrier_map, True)
        mod = gfdm.simple_modulator_cc(timeslots, subcarriers, overlap, f_taps)
        demod = gfdm.advanced_receiver_sb_cc(timeslots, subcarriers, overlap, 64, f_taps, gfdm_constellation, subcarrier_map)
        demapper = gfdm.resource_demapper_cc(timeslots, subcarriers, active_subcarriers, subcarrier_map, True)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, mapper, mod, demod, demapper, snk)
        self.tb.run()

        res = np.array(snk.data())
        self.assertComplexTuplesAlmostEqual(data, res, 2)
Exemple #37
0
    def test_006_steps_equalize(self):
        timeslots = 5
        subcarriers = 32
        overlap = 2
        filter_alpha = 0.35

        taps = get_frequency_domain_filter('rrc', filter_alpha,
                                           timeslots, subcarriers,
                                           overlap)

        data = get_random_qpsk(timeslots * subcarriers)
        D = get_data_matrix(data, subcarriers, group_by_subcarrier=False)
        frame = gfdm_modulate_block(D, taps, timeslots, subcarriers,
                                    overlap, False)
        ref = gfdm_demodulate_block(
            frame, taps, subcarriers, timeslots, overlap)
        eq_vals = np.ones(ref.size, ref.dtype) * np.exp(1.j)

        demod = Demodulator(timeslots, subcarriers, overlap, taps)
        fd_res = demod.fft_equalize_filter_downsample(
            frame * np.exp(1.j), eq_vals)
        res = demod.transform_subcarriers_to_td(fd_res)

        self.assertComplexTuplesAlmostEqual(ref, res, 5)