def generate_forward_data():
    """Generate synthetic forward data that we then invert"""
    scheme = get_scheme()

    mesh = get_fwd_mesh()

    rhomap = [
        [1, pg.utils.complex.toComplex(100, 0 / 1000)],
        # Magnitude: 50 ohm m, Phase: -50 mrad
        [2, pg.utils.complex.toComplex(50, 0 / 1000)],
        [3, pg.utils.complex.toComplex(100, -50 / 1000)],
    ]

    rho = pg.solver.parseArgToArray(rhomap, mesh.cellCount(), mesh)
    fig, axes = plt.subplots(2, 1, figsize=(16 / 2.54, 16 / 2.54))
    pg.show(
        mesh,
        data=np.log(np.abs(rho)),
        ax=axes[0],
        label=r"$log_{10}(|\rho|~[\Omega m])$"
    )
    pg.show(mesh, data=np.abs(rho), ax=axes[1], label=r"$|\rho|~[\Omega m]$")
    pg.show(
        mesh, data=np.arctan2(np.imag(rho), np.real(rho)) * 1000,
        ax=axes[1],
        label=r"$\phi$ [mrad]",
        cMap='jet_r'
    )
    data = ert.simulate(
        mesh,
        res=rhomap,
        scheme=scheme,
        # noiseAbs=0.0,
        # noiseLevel=0.0,
    )

    r_complex = data['rhoa'].array() * np.exp(1j * data['phia'].array())

    # Please note the apparent negative (resistivity) phases!
    fig, axes = plt.subplots(2, 2, figsize=(16 / 2.54, 16 / 2.54))
    ert.showERTData(data, vals=data['rhoa'], ax=axes[0, 0])

    # phia is stored in radians, but usually plotted in milliradians
    ert.showERTData(
        data, vals=data['phia'] * 1000, label=r'$\phi$ [mrad]', ax=axes[0, 1])

    ert.showERTData(
        data, vals=np.real(r_complex), ax=axes[1, 0],
        label=r"$Z'$~[$\Omega$m"
    )
    ert.showERTData(
        data, vals=np.imag(r_complex), ax=axes[1, 1],
        label=r"$Z''$~[$\Omega$]"
    )
    fig.tight_layout()
    fig.show()
    return r_complex
def plot_inv_pars(filename, d, response, Wd, iteration='start'):
    """Plot error-weighted residuals"""
    fig, axes = plt.subplots(1, 2, figsize=(20 / 2.54, 10 / 2.54))

    psi = Wd.dot(d - response)

    ert.showERTData(
        scheme, vals=psi.real, ax=axes[0],
        label=r"$(d' - f') / \epsilon$"
    )
    ert.showERTData(
        scheme, vals=psi.imag, ax=axes[1],
        label=r"$(d'' - f'') / \epsilon$"
    )

    fig.suptitle(
        'Error weighted residuals of iteration {}'.format(iteration), y=1.00)

    fig.tight_layout()
rm.fillConstraints(Wm)
Wm = pg.utils.sparseMatrix2coo(Wm)
###############################################################################
# read-in data and determine error parameters
filename = pg.getExampleFile(
    'CR/synthetic_modeling/data_rre_rim.dat', load=False, verbose=True)
data_rre_rim = np.loadtxt(filename)
N = int(data_rre_rim.size / 2)
d_rcomplex = data_rre_rim[:N] + 1j * data_rre_rim[N:]

dmag = np.abs(d_rcomplex)
dpha = np.arctan2(d_rcomplex.imag, d_rcomplex.real) * 1000

fig, axes = plt.subplots(1, 2, figsize=(20 / 2.54, 10 / 2.54))
k = np.array(ert.createGeometricFactors(scheme))
ert.showERTData(
    scheme, vals=dmag * k, ax=axes[0], label=r'$|\rho_a|~[\Omega$m]')
ert.showERTData(scheme, vals=dpha, ax=axes[1], label=r'$\phi_a~[mrad]$')

# real part: log-magnitude
# imaginary part: phase [rad]
d_rlog = np.log(d_rcomplex)

# add some noise
np.random.seed(42)

noise_magnitude = np.random.normal(
    loc=0,
    scale=np.exp(d_rlog.real) * 0.04
)

# absolute phase error
Exemple #4
0
def show(obj=None, data=None, **kwargs):
    """Mesh and model visualization.

    Syntactic sugar to show a obj with data. Forwards to
    a known visualization for obj. Typical is
    :py:mod:`pygimli.viewer.showMesh` or
    :py:mod:`pygimli.viewer.mayaview.showMesh3D` to show most of the typical 2D
    and 3D content.
    See tutorials and examples for usage hints. An empty show
    call creates an empty ax window.

    Parameters
    ----------
    obj: obj
        obj can be so far.
        * :gimliapi:`GIMLI::Mesh` or list of meshes
        * DataContainer
        * pg.core.Sparse[Map]Matrix

    data: iterable
        Optionally data to visualize. See appropriate show function.

    Keyword Arguments
    -----------------
    **kwargs
        Additional kwargs forward to appropriate show functions.

        * ax : axe [None]
            Matplotlib axes object. Create a new if necessary.
        * fitView : bool [True]
            Scale x and y limits to match the view.

    Returns
    -------
    Return the results from the showMesh* functions. Usually the axe object
    and a colorbar.

    See Also
    --------
    showMesh
    """
    if "axes" in kwargs:
        print("Deprecation Warning: Please use keyword `ax` instead of `axes`")
        kwargs['ax'] = kwargs.pop('axes', None)

    if isinstance(obj, pg.DataContainerERT):
        from pygimli.physics.ert import showERTData
        return showERTData(obj, vals=kwargs.pop('vals', data), **kwargs)

    if isinstance(obj, pg.core.MatrixBase):
        ax, _ = pg.show()
        return drawMatrix(ax, obj, **kwargs)

    mesh = kwargs.pop('mesh', obj)

    if isinstance(mesh, list):
        ax = kwargs.pop('ax', None)
        fitView = kwargs.pop('fitView', ax is None)

        ax, cBar = show(mesh[0],
                        data,
                        hold=1,
                        ax=ax,
                        fitView=fitView,
                        **kwargs)
        xMin = mesh[0].xMin()
        xMax = mesh[0].xMax()
        yMin = mesh[0].yMin()
        yMax = mesh[0].yMax()

        for m in mesh[1:]:
            ax, cBar = show(m, data, ax=ax, hold=1, fitView=False, **kwargs)
            xMin = min(xMin, m.xMin())
            xMax = max(xMax, m.xMax())
            yMin = min(yMin, m.yMin())
            yMax = max(yMax, m.yMax())


#        ax.relim()
#        ax.autoscale_view(tight=True)
        if fitView is not False:
            ax.set_xlim([xMin, xMax])
            ax.set_ylim([yMin, yMax])
        #        print(ax.get_data_interval())
        return ax, cBar

    if isinstance(mesh, pg.Mesh):
        if mesh.dim() == 2:
            if pg.zero(pg.y(mesh)):
                pg.info("swap z<->y coordinates for visualization.")
                meshSwap = pg.Mesh(mesh)
                for n in meshSwap.nodes():
                    n.pos()[1] = n.pos()[2]
                return showMesh(meshSwap, data, **kwargs)

            return showMesh(mesh, data, **kwargs)
        elif mesh.dim() == 3:

            from .vistaview import showMesh3D
            return showMesh3D(mesh, data, **kwargs)
        else:
            pg.error("ERROR: Mesh not valid.", mesh)

    ax = kwargs.pop('ax', None)

    if ax is None:
        ax = plt.subplots()[1]

    return ax, None
Exemple #5
0
def show(obj=None, data=None, **kwargs):
    """Mesh and model visualization.

    Syntactic sugar to show a obj with data. Forwards to
    a known visualization for obj. Typical is
    :py:mod:`pygimli.viewer.showMesh` or
    :py:mod:`pygimli.viewer.mayaview.showMesh3D` to show most of the typical 2D
    and 3D content.
    See tutorials and examples for usage hints. An empty show
    call creates an empty ax window.

    Parameters
    ----------
    obj: obj
        obj can be so far.
        * :gimliapi:`GIMLI::Mesh` or list of meshes
        * DataContainer
        * pg.core.Sparse[Map]Matrix

    data: iterable
        Optionally data to visualize. See appropriate show function.

    Keyword Arguments
    -----------------
    **kwargs
        Additional kwargs forward to appropriate show functions.

        * ax : axe [None]
            Matplotlib axes object. Create a new if necessary.
        * fitView : bool [True]
            Scale x and y limits to match the view.

    Returns
    -------
    Return the results from the showMesh* functions. Usually the axe object
    and a colorbar.

    See Also
    --------
    showMesh
    """
    if "axes" in kwargs:  # remove me in 1.2 #20200515
        print("Deprecation Warning: Please use keyword `ax` instead of `axes`")
        kwargs['ax'] = kwargs.pop('axes', None)

    ### Empty call just to create a axes
    if obj is None and not 'mesh' in kwargs.keys():
        ax = kwargs.pop('ax', None)

        if ax is None:
            ax = plt.subplots(figsize=kwargs.pop('figsize', None))[1]
        return ax, None

    ### try to interprete obj containes a mesh
    if hasattr(obj, 'mesh'):
        return pg.show(obj.mesh, obj, **kwargs)

    ### try to interprete obj as ERT Data
    if isinstance(obj, pg.DataContainerERT):
        from pygimli.physics.ert import showERTData
        return showERTData(obj, vals=kwargs.pop('vals', data), **kwargs)

    ### try to interprete obj as matrices
    if isinstance(obj, pg.core.MatrixBase) or \
        (isinstance(obj, np.ndarray) and obj.ndim == 2):
        return showMatrix(obj, **kwargs)

    try:
        from scipy.sparse import spmatrix
        if isinstance(obj, spmatrix):
            return showMatrix(obj, **kwargs)
    except ImportError:
        pass

    ### try to interprete obj as mesh or list of meshes
    mesh = kwargs.pop('mesh', obj)

    fitView = kwargs.get('fitView', True)

    if isinstance(mesh, list):
        ax = kwargs.pop('ax', None)

        ax, cBar = show(mesh[0],
                        data,
                        hold=1,
                        ax=ax,
                        fitView=fitView,
                        **kwargs)

        for m in mesh[1:]:
            ax, cBar = show(m, data, ax=ax, hold=1, fitView=False, **kwargs)

        if fitView is not False:
            ax.autoscale(enable=True, axis='both', tight=True)
            ax.set_aspect('equal')
        return ax, cBar

    if isinstance(mesh, pg.Mesh):
        if mesh.dim() == 2:
            if pg.zero(pg.y(mesh)):
                pg.info("swap z<->y coordinates for visualization.")
                meshSwap = pg.Mesh(mesh)
                for n in meshSwap.nodes():
                    n.pos()[1] = n.pos()[2]
                return showMesh(meshSwap, data, **kwargs)

            return showMesh(mesh, data, **kwargs)
        elif mesh.dim() == 3:

            from .vistaview import showMesh3D
            return showMesh3D(mesh, data, **kwargs)
        else:
            pg.error("ERROR: Mesh not valid.", mesh)

    pg.error("Can't interprete obj: {0} to show.".format(obj))
    return None, None
Exemple #6
0
data = ert.simulate(
    mesh,
    res=rhomap,
    scheme=scheme,
    # noiseAbs=0.0,
    # noiseLevel=0.0,
)

###############################################################################
# Visualize the modeled data
# Convert magnitude and phase into a complex apparent resistivity
rho_a_complex = data['rhoa'].array() * np.exp(1j * data['phia'].array())

# Please note the apparent negative (resistivity) phases!
fig, axes = plt.subplots(2, 2, figsize=(16 / 2.54, 16 / 2.54))
ert.showERTData(data, vals=data['rhoa'], ax=axes[0, 0])
# phia is stored in radians, but usually plotted in milliradians
ert.showERTData(data,
                vals=data['phia'] * 1000,
                label=r'$\phi$ [mrad]',
                ax=axes[0, 1])

ert.showERTData(data,
                vals=np.real(rho_a_complex),
                ax=axes[1, 0],
                label=r"$\rho_a'$~[$\Omega$m]")
ert.showERTData(data,
                vals=np.imag(rho_a_complex),
                ax=axes[1, 1],
                label=r"$\rho_a''$~[$\Omega$m]")
fig.tight_layout()