Exemple #1
0
def randN(n, minVal=0.0, maxVal=1.0):
    """Create RVector of length n with normally distributed random numbers."""
    r = pg.RVector(n)
    pg.randn(r)
    r *= (maxVal - minVal)
    r += minVal
    return r
Exemple #2
0
def randN(n, minVal=0.0, maxVal=1.0):
    """Create RVector of length n with normally distributed random numbers."""
    r = pg.RVector(n)
    pg.randn(r)
    r *= (maxVal-minVal)
    r += minVal
    return r
Exemple #3
0
def simulateSynth(model, tMax=5000, satSteps=150, ertSteps=10, area=0.1,
                  synthPath='synth/'):
    """Create synthetic example."""

    if not os.path.exists('synth/'):
        os.mkdir(synthPath)

    world = mt.createWorld(start=[-20, 0], end=[20, -16], layers=[-2, -8],
                           worldMarker=False)
    for i, b in enumerate(world.boundaries()):
        b.setMarker(i + 1)

    block = mt.createRectangle(start=[-6, -3.5], end=[6, -6.0], marker=4,
                               boundaryMarker=11, area=area)
    geom = mt.mergePLC([world, block])
    geom.save(synthPath + 'synthGeom')
    # pg.show(geom, boundaryMarker=1)

    paraMesh = pg.meshtools.createMesh(geom, quality=32, area=area,
                                       smooth=[1, 10])

    # translate 1 2 3 4 - > 0 1 2 3
    mapMarker = np.array([0, 0, 1, 2, 3], 'float')
    paraMesh.setCellMarkers(mapMarker[np.array(paraMesh.cellMarkers())])
    paraMesh.save(synthPath + 'synth.bms')

    fop = HydroGeophysicalModelling(mesh=paraMesh, tMax=tMax,
                                    satSteps=satSteps,
                                    ertSteps=ertSteps,
                                    verbose=1)

    # openblas have some problems with to high thread count ..
    # we need to dig into
    print("ThreadCount:", pg.threadCount())
    pg.setThreadCount(4)

    print('##### Simulate synthetic data ' + '#'*50)
    pg.tic()
    rhoaR = fop.response(pg.RVector(model)[paraMesh.cellMarkers()])
    pg.toc()
    print('#'*100)

    # add some noise here
    rand = pg.RVector(len(rhoaR))
    pg.randn(rand)

    rhoaR *= (1.0 + rand * fop.ws.derr.flatten())
    fop.ws.rhoaR = rhoaR.reshape(fop.ws.derr.shape)

    # fop.ws.mesh.save(synthPath + 'synth.bms')
    np.save(synthPath + 'synthK', fop.ws.k)
    np.save(synthPath + 'synthVel', fop.ws.vel)
    np.save(synthPath + 'synthSat', fop.ws.sat)

    fop.ws.scheme.save(synthPath + 'synth.shm', 'a b m n')
    np.save(synthPath + 'synthRhoaRatio', fop.ws.rhoaR)
    np.save(synthPath + 'synthRhoa', fop.ws.rhoa)
    np.save(synthPath + 'synthErr', fop.ws.derr)
Exemple #4
0
def calcApparentResistivities(mesh, meshERT, poro, rhoBrine):
    ert = ERT(verbose=False)

    meshFOP = appendTriangleBoundary(meshERT,
                                     xbound=50, ybound=50, marker=1,
                                     quality=34.0, smooth=False,
                                     markerBoundary=1,
                                     isSubSurface=False, verbose=False)

    swatch = pg.Stopwatch(True)

    print("res 1:", swatch.duration(True))

    resis = resistivityArchie(rBrine=rhoBrine, porosity=poro, S=1.0,
                              mesh=mesh, meshI=meshFOP)

    print("res 2:", swatch.duration(True))

    ertPointsX = [pg.RVector3(x, 0) for x in np.arange(-19, 19.1, 1)]
    ertScheme = ert.createData(ertPointsX, scheme="Dipole Dipole (CC-PP)")

    solutionName = createCacheName('appRes', mesh) + "-" + \
        str(ertScheme.size()) + "-" + str(len(rhoBrine))

    try:
        rhoa = np.load(solutionName + '.bmat.npy')
        ertData = pb.DataContainerERT(solutionName + '.dat')
    except Exception as e:
        print(e)
        print("Building .... ")
        rhoa = np.zeros((len(resis), ertScheme.size()))
        ertScheme.set('k', pb.geometricFactor(ertScheme))
        ertData = ert.simulate(meshFOP, resis[0], ertScheme)

        errPerc = 1
        errVolt = 1e-5
        voltage = ertData('rhoa') / ertData('k')
        ertData.set('err', pg.abs(errVolt / voltage) + errPerc / 100.0)
        print('err min:', min(ertData('err'))*100, 'max:',
              max(ertData('err'))*100)
        ertData.save(solutionName + '.dat', 'a b m n rhoa err k')
        for i in range(0, len(resis)):
            tic = time.time()
            rhoa[i] = ert.fop.response(resis[i])

            rand = pg.RVector(len(rhoa[i]))
            pg.randn(rand)

            rhoa[i] *= (1.0 + rand * ertData('err'))

            print(i, "/", len(resis), " : ", time.time()-tic, "s",
                  "min:", min(resis[i]), "max:", max(resis[i]),
                  "min:", min(rhoa[i]), "max:", max(rhoa[i]))

        np.save(solutionName + '.bmat', rhoa)

    return meshFOP, resis, ertData, rhoa
Exemple #5
0
    def simulate(mesh, res, scheme, verbose=False, **kwargs):
        """Forward calculation vor given mesh, data and resistivity."""
        fop = ERTModelling(verbose=verbose)
        # fop = ERTManager.createFOP(verbose=verbose)

        fop.setData(scheme)
        fop.setMesh(mesh, ignoreRegionManager=True)

        if not scheme.allNonZero('k'):
            scheme.set('k', pg.RVector(scheme.size(), -1))

        rhoa = None
        isArrayData = None

        if hasattr(res[0], '__iter__'):
            isArrayData = True
            rhoa = np.zeros((len(res), scheme.size()))
            for i, r in enumerate(res):
                rhoa[i] = fop.response(r)
        else:
            rhoa = fop.response(res)

        noiseLevel = kwargs.pop('noiseLevel', 0.0)
        if noiseLevel > 0:
            err = kwargs.pop('noiseLevel',
                             0.03) + kwargs.pop('noiseAbs', 1e-4) / rhoa
            scheme.set('err', err)
            rhoa *= 1. + pg.randn(scheme.size()) * err

            if not isArrayData:
                scheme.set('rhoa', rhoa)

        if kwargs.pop('returnArray', False):
            return rhoa
        return scheme
Exemple #6
0
    def simulate(synmodel, ab2=None, mn2=None, errPerc=3.):
        """Forward calculation with optional noise

        Simulates a synthetic data set of a vertical electric sounding and
        appends gaussian distributed noise.
        Block only for now.

        Parameters
        ----------

        ab2: array_like
            Vector of distances between the point of the sounding and the
            current electrodes.

        mn2: array_like [ab2/3]
            Vector of distances between the point of the sounding and the
            potential electrodes.

        errPerc: float [3.]
            Percentage Value for the gaussian noise. Default are 3 %.

        """
        thk = synmodel[0]
        res = synmodel[1]
        if mn2 is None:
            mn2 = ab2/3
        FOP = pg.DC1dModelling(len(res), ab2, mn2)
        syndata = FOP.response(thk + res)
        syndata = syndata * (pg.randn(len(syndata)) * errPerc / 100. + 1.)
        return syndata
    def test_VMD(self, showProgress=False):
        t = np.logspace(-5.5, -2.2, 20)
        verbose = False
        fop = VMDTimeDomainModelling(times=t,
                                     txArea=10000.0,
                                     rxArea=10000.0,
                                     verbose=verbose)
        # [thick[3], res[4]] nLay=4

        vmdMgr = pg.frameworks.MethodManager1d(fop)
        synthModel = np.array([25., 5., 100., 150., 1., 10., 4.])

        ra = vmdMgr.simulate(synthModel)

        err = abs(np.log(t) / 2) * 0.01
        ra *= 1. + pg.randn(len(ra), seed=1337) * err

        model = vmdMgr.invert(ra,
                              err,
                              nLayers=4,
                              layerLimits=[2, 500],
                              maxIter=50,
                              showProgress=showProgress,
                              verbose=verbose)

        if showProgress is True:
            fop.drawModel(ax=vmdMgr.inv.axs[0],
                          model=synthModel,
                          label='Synth')
        np.testing.assert_array_less(vmdMgr.fw.chi2(), 1.5)
Exemple #8
0
    def simulate(synmodel, ab2=None, mn2=None, errPerc=3.):
        """Forward calculation with optional noise

        Simulates a synthetic data set of a vertical electric sounding and
        appends gaussian distributed noise.
        Block only for now.

        Parameters
        ----------

        ab2: array_like
            Vector of distances between the point of the sounding and the
            current electrodes.

        mn2: array_like [ab2/3]
            Vector of distances between the point of the sounding and the
            potential electrodes.

        errPerc: float [3.]
            Percentage Value for the gaussian noise. Default are 3 %.

        """
        thk = synmodel[0]
        res = synmodel[1]
        if mn2 is None:
            mn2 = ab2 / 3
        FOP = pg.DC1dModelling(len(res), ab2, mn2)
        syndata = FOP.response(thk + res)
        syndata = syndata * (pg.randn(len(syndata)) * errPerc / 100. + 1.)
        return syndata
Exemple #9
0
    def simulate(mesh, res, scheme, verbose=False, **kwargs):
        """Forward calculation vor given mesh, data and resistivity."""
        fop = ERTModelling(verbose=verbose)
        # fop = ERTManager.createFOP(verbose=verbose)

        fop.setData(scheme)
        fop.setMesh(mesh, ignoreRegionManager=True)

        if not scheme.allNonZero('k'):

            if min(pg.y(scheme)) != max(pg.y(scheme)) or min(
                    pg.z(scheme)) != max(pg.z(scheme)):
                pg.info(
                    "Non flat earth topography found. "
                    "We will set geometric factors to -1 to emulate "
                    "electrical impedance tomography (EIT). If you want to "
                    "use ERT will full topography support. "
                    "Please consider the use of pyBERT.")

                scheme.set('k', pg.RVector(scheme.size(), -1))
            else:
                scheme.set('k', fop.calcGeometricFactors(scheme))

        rhoa = None
        isArrayData = None

        if hasattr(res[0], '__iter__'):
            isArrayData = True
            rhoa = np.zeros((len(res), scheme.size()))
            for i, r in enumerate(res):
                rhoa[i] = fop.response(r)
        else:
            rhoa = fop.response(res)

        pg.renameKwarg('noisify', 'noiseLevel', kwargs)

        noiseLevel = kwargs.pop('noiseLevel', 0.0)

        if noiseLevel > 0:
            noiseAbs = kwargs.pop('noiseAbs', 1e-4)
            err = noiseLevel + noiseAbs / rhoa
            scheme.set('err', err)
            if verbose:
                pg.info(
                    "Set noise (" + str(noiseLevel * 100) + "% + " +
                    str(noiseAbs) + " V) min:", min(err), "max:", max(err))
            rhoa *= 1. + pg.randn(scheme.size()) * err

        if isArrayData is None:
            scheme.set('rhoa', rhoa)

        if kwargs.pop('returnArray', False):
            return rhoa
        return scheme
Exemple #10
0
    def simulate(self, model, **kwargs):
        # """Run a simulation aka the forward task."""

        ra = self.fop.response(par=model)

        noiseLevel = kwargs.pop('noiseLevel', 0.0)
        if noiseLevel > 0:
            err = self.estimateError(ra, errLevel=noiseLevel)
            ra *= 1. + pg.randn(ra.size(), seed=kwargs.pop('seed', None)) * err
            return ra, err

        return ra
Exemple #11
0
    def simulate(mesh, res, scheme, verbose=False, **kwargs):
        """Forward calculation vor given mesh, data and resistivity."""
        fop = ERTModelling(verbose=verbose)
        # fop = ERTManager.createFOP(verbose=verbose)

        fop.setData(scheme)
        fop.setMesh(mesh, ignoreRegionManager=True)

        if not scheme.allNonZero('k'):

            if min(pg.y(scheme)) != max(pg.y(scheme)) or min(pg.z(scheme)) != max(pg.z(scheme)):
                pg.info("Non flat earth topography found. "
                    "We will set geometric factors to -1 to emulate "
                    "electrical impedance tomography (EIT). If you want to "
                    "use ERT will full topography support. "
                    "Please consider the use of pyBERT.")

                scheme.set('k', pg.RVector(scheme.size(), -1))
            else:
                scheme.set('k', fop.calcGeometricFactors(scheme))

        rhoa = None
        isArrayData = None

        if hasattr(res[0], '__iter__'):
            isArrayData = True
            rhoa = np.zeros((len(res), scheme.size()))
            for i, r in enumerate(res):
                rhoa[i] = fop.response(r)
        else:
            rhoa = fop.response(res)

        pg.renameKwarg('noisify', 'noiseLevel', kwargs)

        noiseLevel = kwargs.pop('noiseLevel', 0.0)

        if noiseLevel > 0:
            noiseAbs = kwargs.pop('noiseAbs', 1e-4)
            err = noiseLevel + noiseAbs / rhoa
            scheme.set('err', err)
            if verbose:
                pg.info("Set noise (" + str(noiseLevel*100) + "% + " + str(noiseAbs) + " V) min:",
                      min(err), "max:", max(err))
            rhoa *= 1. + pg.randn(scheme.size()) * err

        if isArrayData is None:
            scheme.set('rhoa', rhoa)

        if kwargs.pop('returnArray', False):
            return rhoa
        return scheme
Exemple #12
0
nlay = 4  # number of layers
lam = 200.  # (initial) regularization parameter
errPerc = 3.  # relative error of 3 percent
ab2 = np.logspace(-1, 2, 50)  # AB/2 distance (current electrodes)
mn2 = ab2 / 3.  # MN/2 distance (potential electrodes)
###############################################################################
# initialize the forward modelling operator
f = pg.core.DC1dModelling(nlay, ab2, mn2)
###############################################################################
# other ways are by specifying a Data Container or am/an/bm/bn distances
synres = [100., 500., 20., 800.]  # synthetic resistivity
synthk = [0.5, 3.5, 6.]  # synthetic thickness (nlay-th layer is infinite)
###############################################################################
# the forward operator can be called by f.response(model) or simply f(model)
rhoa = f(synthk+synres)
rhoa = rhoa * (pg.randn(len(rhoa), seed=0) * errPerc / 100. + 1.)
###############################################################################
# create some transformations used for inversion
transThk = pg.trans.TransLog()  # log-transform ensures thk>0
transRho = pg.trans.TransLogLU(1, 1000)  # lower and upper bound
transRhoa = pg.trans.TransLog()  # log transformation for data
###############################################################################
# set model transformation for thickness and resistivity
f.region(0).setTransModel(transThk)  # 0=thickness
f.region(1).setTransModel(transRho)  # 1=resistivity
###############################################################################
# generate start model values from median app. resistivity & spread
paraDepth = max(ab2) / 3.  # rule-of-thumb for Wenner/Schlumberger
f.region(0).setStartValue(paraDepth / nlay / 2)
f.region(1).setStartValue(np.median(rhoa))
###############################################################################
Exemple #13
0
nlay = 4  # number of layers
lam = 200.  # (initial) regularization parameter
errPerc = 10.  # relative error of 3 percent
ab2 = np.logspace(-1, 2, 50)  # AB/2 distance (current electrodes)
mn2 = ab2 / 3.  # MN/2 distance (potential electrodes)
###############################################################################
# initialize the forward modelling operator
f = pg.DC1dModelling(nlay, ab2, mn2)
###############################################################################
# other ways are by specifying a Data Container or am/an/bm/bn distances
synres = [100., 500., 20., 800.]  # synthetic resistivity
synthk = [0.5, 3.5, 6.]  # synthetic thickness (nlay-th layer is infinite)
###############################################################################
# the forward operator can be called by f.response(model) or simply f(model)
rhoa = f(synthk+synres)
rhoa = rhoa * (pg.randn(len(rhoa)) * errPerc / 100. + 1.)
###############################################################################
# create some transformations used for inversion
transThk = pg.RTransLog()  # log-transform ensures thk>0
transRho = pg.RTransLogLU(1, 1000)  # lower and upper bound
transRhoa = pg.RTransLog()  # log transformation for data
###############################################################################
# set model transformation for thickness and resistivity
f.region(0).setTransModel(transThk)  # 0=thickness
f.region(1).setTransModel(transRho)  # 1=resistivity
###############################################################################
# generate start model values from median app. resistivity & spread
paraDepth = max(ab2) / 3.  # rule-of-thumb for Wenner/Schlumberger
f.region(0).setStartValue(paraDepth / nlay / 2)
f.region(1).setStartValue(np.median(rhoa))
###############################################################################
Exemple #14
0
    def simulate(mesh, slowness, scheme, verbose=False, **kwargs):
        """Simulate a traveltime measurement.

        Perform the forward task for a given mesh, a slowness distribution (per
        cell) and return data (traveltime) for a measurement scheme. This is a
        static method since it does not interfere with the managers inversion
        approaches.

        Parameters
        ----------
        mesh : :gimliapi:`GIMLI::Mesh`
            Mesh to calculate for.

        slowness : array(mesh.cellCount()) | array(N, mesh.cellCount())
            slowness distribution for the given mesh cells can be:

            * a single array of len mesh.cellCount()
            * a matrix of N slowness distributions of len mesh.cellCount()
            * a res map as [[marker0, res0], [marker1, res1], ...]

        scheme : :gimliapi:`GIMLI::DataContainer`
            data measurement scheme

        verbose : boolean
            Be verbose.

        Other parameters
        ----------------
        noisify : boolean
            add normal distributed noise based on scheme('err')

        Returns
        -------
        t : array(N, data.size()) | DataContainer
            The resulting simulated travel time values.
            Either one column array or matrix in case of slowness matrix.
            A DataContainer is return if noisify set to True.

        """
        fop = Refraction.createFOP(verbose=verbose)

        fop.setData(scheme)
        fop.setMesh(mesh, ignoreRegionManager=True)

        if len(slowness) == mesh.cellCount():
            if max(slowness) > 1.:
                print('Warning: slowness values larger than 1 (' +
                      str(max(slowness)) + ').. assuming that are velocity '
                      'values .. building reciprocity')
                t = fop.response(1. / slowness)
            else:
                t = fop.response(slowness)
        else:
            print(mesh)
            print("slowness: ", slowness)
            raise BaseException("Simulate called with wrong slowness array.")

        ret = pg.DataContainer(scheme)
        ret.set('t', t)

        noiseLevel = kwargs.pop('noiseLevel', 0)
        noiseAbs = kwargs.pop('noiseAbs', 0)

        if noiseLevel > 0 or noiseAbs > 0:
            if not ret.allNonZero('err'):
                ret.set('t', t)
                ret.set(
                    'err',
                    pg.physics.Refraction.estimateError(
                        ret, absoluteError=noiseAbs))

            if verbose:
                print("Data error estimates (min:max) ", min(ret('err')), ":",
                      max(ret('err')))

            t += pg.randn(ret.size()) * ret('err')
            ret.set('t', t)

        if kwargs.pop('returnArray', False):
            return t

        return ret
Exemple #15
0
    def simulate(self, mesh, scheme, res, **kwargs):
        """Simulate an ERT measurement.

        Perform the forward task for a given mesh, a resistivity distribution
        (per cell), a measurement
        scheme and will return data (apparent resistivity) or potential fields.

        This function can also operate on complex resistivity models, thereby
        computing complex apparent resistivities.

        The forward operator itself only calculate potential values
        for the given scheme file.
        To calculate apparent resistivities, geometric factors (k) are needed.
        If there are no values k in the DataContainerERT scheme, then we will
        try to calculate them, either analytic or by using a p2-refined
        version of the given mesh.

        TODO
        ----
        * 2D + Complex + SR

        Args
        ----
        mesh : :gimliapi:`GIMLI::Mesh`
            2D or 3D Mesh to calculate for.

        res : float, array(mesh.cellCount()) | array(N, mesh.cellCount()) | list
            Resistivity distribution for the given mesh cells can be:
            . float for homogeneous resistivity
            . single array of length mesh.cellCount()
            . matrix of N resistivity distributions of length mesh.cellCount()
            . resistivity map as [[regionMarker0, res0],
                                  [regionMarker0, res1], ...]

        scheme : :gimliapi:`GIMLI::DataContainerERT`
            Data measurement scheme.

        Keyword Args
        ------------
        verbose: bool[False]
            Be verbose. Will override class settings.
        calcOnly: bool [False]
            Use fop.calculate instead of fop.response. Useful if you want
            to force the calculation of impedances for homogeneous models.
            No noise handling. Solution is put as token 'u' in the returned
            DataContainerERT.
        noiseLevel: float [0.0]
            add normally distributed noise based on
            scheme('err') or on noiseLevel if scheme did not contain 'err'
        noiseAbs: float [0.0]
            Absolute voltage error in V
        returnArray: bool [False]
            Returns an array of apparent resistivities instead of
            a DataContainerERT
        returnFields: bool [False]
            Returns a matrix of all potential values (per mesh nodes)
            for each injection electrodes.

        Returns
        -------
        DataContainerERT | array(N, data.size()) | array(N, data.size()) |
        array(N, data.size()):
            Data container with resulting apparent resistivity data and
            errors (if noiseLevel or noiseAbs is set).
            Optional returns a Matrix of rhoa values
            (for returnArray==True forces noiseLevel=0).
            In case of a complex valued resistivity model, phase values will be
            returned in the DataContainerERT (see example below), or as an
            additional returned array.

        Examples
        --------
        # TODO: Remove pybert dependencies
        # >>> import pybert as pb
        # >>> import pygimli as pg
        # >>> import pygimli.meshtools as mt
        # >>> world = mt.createWorld(start=[-50, 0], end=[50, -50],
        # ...                        layers=[-1, -5], worldMarker=True)
        # >>> scheme = pb.createData(
        # ...                     elecs=pg.utils.grange(start=-10, end=10, n=21),
        # ...                     schemeName='dd')
        # >>> for pos in scheme.sensorPositions():
        # ...     _= world.createNode(pos)
        # ...     _= world.createNode(pos + [0.0, -0.1])
        # >>> mesh = mt.createMesh(world, quality=34)
        # >>> rhomap = [
        # ...    [1, 100. + 0j],
        # ...    [2, 50. + 0j],
        # ...    [3, 10.+ 0j],
        # ... ]
        # >>> ert = pb.ERTManager()
        # >>> data = ert.simulate(mesh, res=rhomap, scheme=scheme, verbose=True)
        # >>> rhoa = data.get('rhoa').array()
        # >>> phia = data.get('phia').array()
        """
        verbose = kwargs.pop('verbose', self.verbose)
        calcOnly = kwargs.pop('calcOnly', False)
        returnFields = kwargs.pop("returnFields", False)
        returnArray = kwargs.pop('returnArray', False)
        noiseLevel = kwargs.pop('noiseLevel', 0.0)
        noiseAbs = kwargs.pop('noiseAbs', 1e-4)
        seed = kwargs.pop('seed', None)

        #segfaults with self.fop (test & fix)
        fop = self.createForwardOperator(useBert=self.useBert, sr=self.sr)
        fop.data = scheme
        fop.setMesh(mesh, ignoreRegionManager=True)
        fop.verbose = verbose

        rhoa = None
        phia = None

        isArrayData = False
        # parse the given res into mesh-cell-sized array
        if isinstance(res, int) or isinstance(res, float):
            res = np.ones(mesh.cellCount()) * float(res)
        elif isinstance(res, complex):
            res = np.ones(mesh.cellCount()) * res
        elif hasattr(res[0], '__iter__'):  # ndim == 2
            if len(res[0]) == 2:  # res seems to be a res map
                # check if there are markers in the mesh that are not defined in
                # the rhomap. better signal here before it results in some error
                meshMarkers = list(set(mesh.cellMarkers()))
                mapMarkers = [m[0] for m in res]
                if any([mark not in mapMarkers for mark in meshMarkers]):
                    left = [m for m in meshMarkers if m not in mapMarkers]
                    pg.critical(
                        "Mesh contains markers without assigned resistivities {}. Please fix given rhomap."
                        .format(left))
                res = pg.solver.parseArgToArray(res, mesh.cellCount(), mesh)
            else:  # probably nData x nCells array
                # better check for array data here
                isArrayData = True

        if isinstance(res[0], np.complex) or isinstance(res, pg.CVector):
            pg.info("Complex resistivity values found.")
            fop.setComplex(True)
        else:
            fop.setComplex(False)

        if not scheme.allNonZero('k') and not calcOnly:
            if verbose:
                pg.info('Calculate geometric factors.')
            scheme.set('k', fop.calcGeometricFactor(scheme))

        ret = pg.DataContainerERT(scheme)
        ## just be sure that we don't work with artifacts
        ret['u'] *= 0.0
        ret['i'] *= 0.0
        ret['r'] *= 0.0

        if isArrayData:
            rhoa = np.zeros((len(res), scheme.size()))
            for i, r in enumerate(res):
                rhoa[i] = fop.response(r)
                if verbose:
                    print(i, "/", len(res), " : ", pg.dur(), "s", "min r:",
                          min(r), "max r:", max(r), "min r_a:", min(rhoa[i]),
                          "max r_a:", max(rhoa[i]))
        else:  # res is single resistivity array
            if len(res) == mesh.cellCount():

                if calcOnly:
                    fop.mapERTModel(res, 0)

                    dMap = pg.core.DataMap()
                    fop.calculate(dMap)
                    if fop.complex():
                        pg.critical('Implement me')
                    else:
                        ret["u"] = dMap.data(scheme)
                        ret["i"] = np.ones(ret.size())

                    if returnFields:
                        return pg.Matrix(fop.solution())
                    return ret
                else:
                    if fop.complex():
                        res = pg.utils.squeezeComplex(res)

                    resp = fop.response(res)

                    if fop.complex():
                        rhoa, phia = pg.utils.toPolar(resp)
                    else:
                        rhoa = resp
            else:
                print(mesh)
                print("res: ", res)
                raise BaseException(
                    "Simulate called with wrong resistivity array.")

        if not isArrayData:
            ret['rhoa'] = rhoa

            if phia is not None:
                ret.set('phia', phia)
        else:
            ret.set('rhoa', rhoa[0])
            if phia is not None:
                ret.set('phia', phia[0])

        if returnFields:
            return pg.Matrix(fop.solution())

        if noiseLevel > 0:  # if errors in data noiseLevel=1 just triggers
            if not ret.allNonZero('err'):
                # 1A  and #100µV
                ret.set(
                    'err',
                    self.estimateError(ret,
                                       relativeError=noiseLevel,
                                       absoluteUError=noiseAbs,
                                       absoluteCurrent=1))
                print("Data error estimate (min:max) ", min(ret('err')), ":",
                      max(ret('err')))

            rhoa *= 1. + pg.randn(ret.size(), seed=seed) * ret('err')
            ret.set('rhoa', rhoa)

            ipError = None
            if phia is not None:
                if scheme.allNonZero('iperr'):
                    ipError = scheme('iperr')
                else:
                    # np.abs(self.data("phia") +TOLERANCE) * 1e-4absoluteError
                    if noiseLevel > 0.5:
                        noiseLevel /= 100.

                    if 'phiErr' in kwargs:
                        ipError = np.ones(
                            ret.size()) * kwargs.pop('phiErr') / 1000
                    else:
                        ipError = abs(ret["phia"]) * noiseLevel

                    if verbose:
                        print("Data IP abs error estimate (min:max) ",
                              min(ipError), ":", max(ipError))

                phia += np.randn(ret.size(), seed=seed) * ipError
                ret['iperr'] = ipError
                ret['phia'] = phia

        # check what needs to be setup and returned

        if returnArray:
            if phia is not None:
                return rhoa, phia
            else:
                return rhoa

        return ret
Exemple #16
0
# The function startModel defines a meaningful starting vector. There are other
# methods to set the starting model as inv.setModel() but this one is a default
# one for people who use the class and forget about a starting model.

# We first create an abscissa vector using numpy (note that pygimli also
# provides an exp function and generate synthetic data with two arbitrary A and
# X values.

x = np.arange(0, 1, 1e-2)
data = 10.5 * np.exp(-x / 550e-3)

###############################################################################
# We define an (absolute) error level and add Gaussian noise to the data.

error = 0.5
data += pg.randn(*data.shape) * error
relError = error / data

###############################################################################
# Next, an instance of the forward operator is created. We could use it for
# calculating the synthetic data using f.response([10.5, 0.55]) or just
# f([10.5, 0.55]). We create a real-valued (R) inversion passing the forward
# operator, the data. A verbose boolean flag could be added to provide some
# output the inversion, another one prints more and saves files for debugging.

f = ExpModelling(x)
inv = pg.Inversion(f)

###############################################################################
# We create a real-valued logarithmic transformation and apply it to the model.
# Similar could be done for the data which are by default treated linearly.
Exemple #17
0
nlay = 4  # number of layers
lam = 200.  # (initial) regularization parameter
errPerc = 10.  # relative error of 3 percent
ab2 = np.logspace(-1, 2, 50)  # AB/2 distance (current electrodes)
mn2 = ab2 / 3.  # MN/2 distance (potential electrodes)
###############################################################################
# initialize the forward modelling operator
f = pg.DC1dModelling(nlay, ab2, mn2)
###############################################################################
# other ways are by specifying a Data Container or am/an/bm/bn distances
synres = [100., 500., 20., 800.]  # synthetic resistivity
synthk = [0.5, 3.5, 6.]  # synthetic thickness (nlay-th layer is infinite)
###############################################################################
# the forward operator can be called by f.response(model) or simply f(model)
rhoa = f(synthk + synres)
rhoa = rhoa * (pg.randn(len(rhoa)) * errPerc / 100. + 1.)
###############################################################################
# create some transformations used for inversion
transThk = pg.RTransLog()  # log-transform ensures thk>0
transRho = pg.RTransLogLU(1, 1000)  # lower and upper bound
transRhoa = pg.RTransLog()  # log transformation for data
###############################################################################
# set model transformation for thickness and resistivity
f.region(0).setTransModel(transThk)  # 0=thickness
f.region(1).setTransModel(transRho)  # 1=resistivity
###############################################################################
# generate start model values from median app. resistivity & spread
paraDepth = max(ab2) / 3.  # rule-of-thumb for Wenner/Schlumberger
f.region(0).setStartValue(paraDepth / nlay / 2)
f.region(1).setStartValue(np.median(rhoa))
###############################################################################
Exemple #18
0
    def simulate(self, mesh, scheme, slowness=None, vel=None, seed=None,
                 secNodes=2, noiseLevel=0.0, noiseAbs=0.0, **kwargs):
        """Simulate traveltime measurements.

        Perform the forward task for a given mesh, a slowness distribution (per
        cell) and return data (traveltime) for a measurement scheme.

        Parameters
        ----------
        mesh : :gimliapi:`GIMLI::Mesh`
            Mesh to calculate for or use the last known mesh.
        scheme: :gimliapi:`GIMLI::DataContainer`
            Data measurement scheme needs 's' for shot and 'g' for geophone
            data token.
        slowness : array(mesh.cellCount()) | array(N, mesh.cellCount())
            Slowness distribution for the given mesh cells can be:

            * a single array of len mesh.cellCount()
            * a matrix of N slowness distributions of len mesh.cellCount()
            * a res map as [[marker0, res0], [marker1, res1], ...]
        vel : array(mesh.cellCount()) | array(N, mesh.cellCount())
            Velocity distribution for the given mesh cells.
            Will overwrite given slowness.
        secNodes: int [2]
            Number of refinement nodes to increase accuracy of the forward
            calculation.
        noiseLevel: float [0.0]
            Add relative noise to the simulated data. noiseLevel*100 in %
        noiseAbs: float [0.0]
            Add absolute noise to the simulated data in ms.
        seed: int [None]
            Seed the random generator for the noise.

        Keyword Arguments
        -----------------
        returnArray: [False]
            Return only the calculated times.
        verbose: [self.verbose]
            Overwrite verbose level.
        **kwargs
            Additional kwargs ...

        Returns
        -------
        t : array(N, data.size()) | DataContainer
            The resulting simulated travel time values.
            Either one column array or matrix in case of slowness matrix.
        """
        verbose = kwargs.pop('verbose', self.verbose)

        fop = self.fop
        fop.data = scheme
        fop.verbose = verbose

        if mesh is not None:
            self.applyMesh(mesh, secNodes=secNodes, ignoreRegionManager=True)

        if vel is not None:
            slowness = 1/vel

        if slowness is None:
            pg.critical("Need some slowness or velocity distribution for"
                        " simulation.")

        if len(slowness) == self.fop.mesh().cellCount():
            t = fop.response(slowness)
        else:
            print(self.fop.mesh())
            print("slowness: ", slowness)
            pg.critical("Simulate called with wrong slowness array.")

        ret = pg.DataContainer(scheme)
        ret.set('t', t)

        if noiseLevel > 0 or noiseAbs > 0:
            if not ret.allNonZero('err'):
                ret.set('t', t)
                err = noiseAbs + t * noiseLevel
                ret.set('err', err)

            pg.verbose("Absolute error estimates (min:max) {0}:{1}".format(
                min(ret('err')), max(ret('err'))))

            t += pg.randn(ret.size(), seed=seed) * ret('err')
            ret.set('t', t)

        if kwargs.pop('returnArray', False) is True:
            return t

        return ret
Exemple #19
0
res[1] = 10.
res[2] = 50.
model = pg.cat(thk, res)  # paste together to one model

###############################################################################
# We first set up EM forward operator and generate synthetic data with noise

coilspacing = 50.
nf = 10
freq = pg.Vector(nf, 110.)
for i in range(nf - 1):
    freq[i + 1] = freq[i] * 2.

fEM = pg.core.FDEM1dModelling(nlay, freq, coilspacing)
dataEM = fEM(model)
dataEM += pg.randn(len(dataEM), seed=1234) * noiseEM

###############################################################################
# We define model transformations: logarithms and log with upper+lower bounds

transRhoa = pg.trans.TransLog()
transThk = pg.trans.TransLog()
transRes = pg.trans.TransLogLU(1., 1000.)
transEM = pg.trans.Trans()
fEM.region(0).setTransModel(transThk)
fEM.region(1).setTransModel(transRes)

###############################################################################
# We set up the independent EM inversion and run the model.

invEM = pg.core.Inversion(dataEM, fEM, transEM, True, True)
Exemple #20
0
    def simulate(mesh, slowness, scheme, verbose=False, **kwargs):
        """Simulate a traveltime measurement.

        Perform the forward task for a given mesh, a slowness distribution (per
        cell) and return data (traveltime) for a measurement scheme. This is a
        static method since it does not interfere with the managers inversion
        approaches.

        Parameters
        ----------
        mesh : :gimliapi:`GIMLI::Mesh`
            Mesh to calculate for.

        slowness : array(mesh.cellCount()) | array(N, mesh.cellCount())
            slowness distribution for the given mesh cells can be:

            * a single array of len mesh.cellCount()
            * a matrix of N slowness distributions of len mesh.cellCount()
            * a res map as [[marker0, res0], [marker1, res1], ...]

        scheme : :gimliapi:`GIMLI::DataContainer`
            data measurement scheme

        verbose : boolean
            Be verbose.

        Other parameters
        ----------------
        noisify : boolean
            add normal distributed noise based on scheme('err')

        Returns
        -------
        t : array(N, data.size()) | DataContainer
            The resulting simulated travel time values.
            Either one column array or matrix in case of slowness matrix.
            A DataContainer is return if noisify set to True.

        """
        fop = Refraction.createFOP(verbose=verbose)

        fop.setData(scheme)
        fop.setMesh(mesh, ignoreRegionManager=True)

        if len(slowness) == mesh.cellCount():
            if max(slowness) > 1.:
                print('Warning: slowness values larger than 1 (' +
                      str(max(slowness)) + ').. assuming that are velocity '
                      'values .. building reciprocity')
                t = fop.response(1./slowness)
            else:
                t = fop.response(slowness)
        else:
            print(mesh)
            print("slowness: ", slowness)
            raise BaseException("Simulate called with wrong slowness array.")

        ret = pg.DataContainer(scheme)
        ret.set('t', t)

        noiseLevel = kwargs.pop('noiseLevel', 0)
        noiseAbs = kwargs.pop('noiseAbs', 0)

        if noiseLevel > 0 or noiseAbs > 0:
            if not ret.allNonZero('err'):
                ret.set('t', t)
                ret.set('err', pg.physics.Refraction.estimateError(
                    ret, absoluteError=noiseAbs))

            if verbose:
                print("Data error estimates (min:max) ",
                      min(ret('err')), ":", max(ret('err')))

            t += pg.randn(ret.size()) * ret('err')
            ret.set('t', t)

        if kwargs.pop('returnArray', False):
            return t

        return ret
Exemple #21
0
def calcApparentResistivities(mesh, meshERT, poro, rhoBrine):
    ert = ERT(verbose=False)

    meshFOP = appendTriangleBoundary(meshERT,
                                     xbound=50,
                                     ybound=50,
                                     marker=1,
                                     quality=34.0,
                                     smooth=False,
                                     markerBoundary=1,
                                     isSubSurface=False,
                                     verbose=False)

    swatch = pg.Stopwatch(True)

    print("res 1:", swatch.duration(True))

    resis = resistivityArchie(rBrine=rhoBrine,
                              porosity=poro,
                              S=1.0,
                              mesh=mesh,
                              meshI=meshFOP)

    print("res 2:", swatch.duration(True))

    ertPointsX = [pg.RVector3(x, 0) for x in np.arange(-19, 19.1, 1)]
    ertScheme = ert.createData(ertPointsX, scheme="Dipole Dipole (CC-PP)")

    solutionName = createCacheName('appRes', mesh) + "-" + \
        str(ertScheme.size()) + "-" + str(len(rhoBrine))

    try:
        rhoa = np.load(solutionName + '.bmat.npy')
        ertData = pb.DataContainerERT(solutionName + '.dat')
    except Exception as e:
        print(e)
        print("Building .... ")
        rhoa = np.zeros((len(resis), ertScheme.size()))
        ertScheme.set('k', pb.geometricFactor(ertScheme))
        ertData = ert.simulate(meshFOP, resis[0], ertScheme)

        errPerc = 1
        errVolt = 1e-5
        voltage = ertData('rhoa') / ertData('k')
        ertData.set('err', pg.abs(errVolt / voltage) + errPerc / 100.0)
        print('err min:',
              min(ertData('err')) * 100, 'max:',
              max(ertData('err')) * 100)
        ertData.save(solutionName + '.dat', 'a b m n rhoa err k')
        for i in range(0, len(resis)):
            tic = time.time()
            rhoa[i] = ert.fop.response(resis[i])

            rand = pg.RVector(len(rhoa[i]))
            pg.randn(rand)

            rhoa[i] *= (1.0 + rand * ertData('err'))

            print(i, "/", len(resis), " : ",
                  time.time() - tic, "s", "min:", min(resis[i]), "max:",
                  max(resis[i]), "min:", min(rhoa[i]), "max:", max(rhoa[i]))

        np.save(solutionName + '.bmat', rhoa)

    return meshFOP, resis, ertData, rhoa
Exemple #22
0
def simulateSynth(model,
                  tMax=5000,
                  satSteps=150,
                  ertSteps=10,
                  area=0.1,
                  synthPath='synth/'):
    """Create synthetic example."""

    if not os.path.exists('synth/'):
        os.mkdir(synthPath)

    world = mt.createWorld(start=[-20, 0],
                           end=[20, -16],
                           layers=[-2, -8],
                           worldMarker=False)
    for i, b in enumerate(world.boundaries()):
        b.setMarker(i + 1)

    block = mt.createRectangle(start=[-6, -3.5],
                               end=[6, -6.0],
                               marker=4,
                               boundaryMarker=11,
                               area=area)
    geom = mt.mergePLC([world, block])
    geom.save(synthPath + 'synthGeom')
    # pg.show(geom, boundaryMarker=1)

    paraMesh = pg.meshtools.createMesh(geom,
                                       quality=32,
                                       area=area,
                                       smooth=[1, 10])

    # translate 1 2 3 4 - > 0 1 2 3
    mapMarker = np.array([0, 0, 1, 2, 3], 'float')
    paraMesh.setCellMarkers(mapMarker[np.array(paraMesh.cellMarkers())])
    paraMesh.save(synthPath + 'synth.bms')

    fop = HydroGeophysicalModelling(mesh=paraMesh,
                                    tMax=tMax,
                                    satSteps=satSteps,
                                    ertSteps=ertSteps,
                                    verbose=1)

    # openblas have some problems with to high thread count ..
    # we need to dig into
    print("TC", pg.threadCount())
    pg.setThreadCount(4)

    print('##### Simulate synthetic data ' + '#' * 50)
    pg.tic()
    rhoaR = fop.response(pg.RVector(model)[paraMesh.cellMarkers()])
    pg.toc()
    print('#' * 100)

    # add some noise here
    rand = pg.RVector(len(rhoaR))
    pg.randn(rand)

    rhoaR *= (1.0 + rand * fop.ws.derr.flatten())
    fop.ws.rhoaR = rhoaR.reshape(fop.ws.derr.shape)

    # fop.ws.mesh.save(synthPath + 'synth.bms')
    np.save(synthPath + 'synthK', fop.ws.k)
    np.save(synthPath + 'synthVel', fop.ws.vel)
    np.save(synthPath + 'synthSat', fop.ws.sat)

    fop.ws.scheme.save(synthPath + 'synth.shm', 'a b m n')
    np.save(synthPath + 'synthRhoaRatio', fop.ws.rhoaR)
    np.save(synthPath + 'synthRhoa', fop.ws.rhoa)
    np.save(synthPath + 'synthErr', fop.ws.derr)
Exemple #23
0
res[2] = 50.
model = pg.cat(thk, res)  # paste together to one model

###############################################################################
# We first set up EM forward operator and generate synthetic data with noise

coilspacing = 50.
nf = 10
freq = pg.Vector(nf, 110.)
for i in range(nf - 1):
    freq[i + 1] = freq[i] * 2.

fEM = pg.core.FDEM1dModelling(nlay, freq, coilspacing)
dataEM = fEM(model)
for i in range(len(dataEM)):
    dataEM[i] += pg.randn(1)[0] * noiseEM

###############################################################################
# We define model transformations: logarithms and log with upper+lower bounds

transRhoa = pg.trans.TransLog()
transThk = pg.trans.TransLog()
transRes = pg.trans.TransLogLU(1., 1000.)
transEM = pg.trans.Trans()
fEM.region(0).setTransModel(transThk)
fEM.region(1).setTransModel(transRes)

###############################################################################
# We set up the independent EM inversion and run the model.

invEM = pg.core.Inversion(dataEM, fEM, transEM, True, True)