Exemple #1
0
def test_means():
    N = 2   # Number of neurons
    B = 3   # Number of basis functions
    L = 10  # Length of basis functions

    basis = cosine_basis(B, L=L) / L
    regressions = [SparseBernoulliRegression(N, B, mu_b=-2, S_b=0.1) for n in range(N)]
    model = NonlinearAutoregressiveModel(N, regressions, basis=basis)

    X, Y = model.generate(T=1000, keep=False)

    model.add_data(Y)
    Xtest = model.data_list[0][0]

    assert np.allclose(X, Xtest)

    means = model.means
    model.data_list[0] = (X, Y)
    means2 = model.means
    assert np.allclose(means, means2)

    plt.figure()
    for n in range(N):
        plt.subplot(N,1,n+1)
        plt.plot(means[0][:,n], lw=4)
        plt.plot(means2[0][:,n], lw=1)
        tn = np.where(Y[:,n])[0]
        plt.plot(tn, np.ones_like(tn), 'ko')
        plt.ylim(-0.05, 1.1)
    plt.show()
Exemple #2
0
def test_means():
    N = 2  # Number of neurons
    B = 3  # Number of basis functions
    L = 10  # Length of basis functions

    basis = cosine_basis(B, L=L) / L
    regressions = [
        SparseBernoulliRegression(N, B, mu_b=-2, S_b=0.1) for n in range(N)
    ]
    model = NonlinearAutoregressiveModel(N, regressions, basis=basis)

    X, Y = model.generate(T=1000, keep=False)

    model.add_data(Y)
    Xtest = model.data_list[0][0]

    assert np.allclose(X, Xtest)

    means = model.means
    model.data_list[0] = (X, Y)
    means2 = model.means
    assert np.allclose(means, means2)

    plt.figure()
    for n in range(N):
        plt.subplot(N, 1, n + 1)
        plt.plot(means[0][:, n], lw=4)
        plt.plot(means2[0][:, n], lw=1)
        tn = np.where(Y[:, n])[0]
        plt.plot(tn, np.ones_like(tn), 'ko')
        plt.ylim(-0.05, 1.1)
    plt.show()
Exemple #3
0
    def GLM(self, recordings_index, trial_index, brain_area):
        '''
        https://github.com/slinderman/pyglm
        '''
        from pyglm.models import SparseBernoulliGLM
        from pyglm.utils.basis import cosine_basis
        path = self.all_data_path + '/' + self.selected_recordings[
            recordings_index]
        trials = np.load(path + '/' + 'trials.intervals.npy')
        rates, binned_spk_tr = self.convert_one_population_to_rates(
            recordings_index, trial_index, brain_area)
        #rates=rates.T.reshape(1,rates.shape[1],rates.shape[0])
        print(binned_spk_tr.shape)
        binned_spk_tr_ = binned_spk_tr.reshape(binned_spk_tr.shape[0],
                                               binned_spk_tr.shape[2])
        print(binned_spk_tr_.shape)
        N = 4  # Number of neurons
        B = 1  # Number of "basis functions"
        L = 10  # Autoregressive window of influence
        basis = cosine_basis(B=B, L=L) / L

        # Generate some data from a model with self inhibition
        model = SparseBernoulliGLM(N, basis=basis)
        model.add_data(binned_spk_tr_[:4, :].T)

        # Initialize the plot
        #_, _, handles = model.plot()

        # Run a Gibbs sampler
        N_samples = 100
        lps = []
        for itr in range(N_samples):
            model.resample_model()
            lps.append(model.log_likelihood())
        print(lps)
        plt.plot(lps)
        model.plot()
Exemple #4
0
from pybasicbayes.util.text import progprint_xrange

from pyglm.utils.basis import cosine_basis
from pyglm.plotting import plot_glm
from models import LatentDistanceWeightsSparseBernoulliGLM

T = 10000  # Number of time bins to generate
N = 9  # Number of neurons
B = 1  # Number of "basis functions"
L = 100  # Autoregressive window of influence
D = 2  # Dimensionality of the feature space

# Create a cosine basis to model smooth influence of
# spikes on one neuron on the later spikes of others.
basis = cosine_basis(B=B, L=L) / L

true_model = LatentDistanceWeightsSparseBernoulliGLM(N,
                                                     basis=basis,
                                                     regression_kwargs=dict(
                                                         rho=0.7,
                                                         S_w=1,
                                                         mu_b=-2))

# Set the true locations to be on a grid
w = 3
s = 1.24
x = s * (np.arange(N) % w)
y = s * (np.arange(N) // w)
L_D = np.hstack((x[:, None], y[:, None]))
Exemple #5
0
from pyglm.utils.basis import cosine_basis
from models_tv import SparseBernoulliGLM_f
from hips.plotting.colormaps import harvard_colors

sns.set_style("white")
paper_rc = {'lines.linewidth': 2.5, 'lines.markersize': 10, 'font.size': 15,
            'axes.labelsize':15, 'xtick.labelsize': 15, 'ytick.labelsize': 15}
sns.set_context("paper", rc = paper_rc)
plt.ion()

T = 2000  # Number of time bins to generate
N = 2  # Number of neurons
B = 1  # Number of "basis functions"
L = 2  # Autoregressive window of influence

basis = cosine_basis(B=B, L=L, a=1.0 / 2) / L

# Generate some data from a model with self inhibition
# The model structure has the info for the network and regression we used
true_model = \
    SparseBernoulliGLM_f(T, N, B, basis=basis,
                         regression_kwargs=dict(rho=1, mu_w=0, S_w=0.001, mu_b=-2, S_b=0.0001))

# Network randomly assigned weights
# sine wave
Fs = [1000, 2000, 3000]
f = 5
sample = T
x = np.arange(sample)

# Randomly assiged network weights
Exemple #6
0
plt.ion()

from pybasicbayes.util.text import progprint_xrange

from pyglm.utils.basis import cosine_basis
from pyglm.plotting import plot_glm
from pyglm.models import SparseBernoulliGLM

T = 10000   # Number of time bins to generate
N = 4       # Number of neurons
B = 1       # Number of "basis functions"
L = 100     # Autoregressive window of influence

# Create a cosine basis to model smooth influence of
# spikes on one neuron on the later spikes of others.
basis = cosine_basis(B=B, L=L) / L

# Generate some data from a model with self inhibition
true_model = \
    SparseBernoulliGLM(N, basis=basis,
                       regression_kwargs=dict(S_w=10.0, mu_b=-2.))
for n in range(N):
    true_model.regressions[n].a[n] = True
    true_model.regressions[n].W[n,:] = -2.0
_, Y = true_model.generate(T=T, keep=True)

# Plot the true model
fig, axs, handles = true_model.plot()
plt.pause(0.1)

# Create a test model for fitting