Exemple #1
0
def benchmark_differential_evolution():
    island = pg_island(algo=de(gen=10), prob=problem(rosenbrock(5)), size=10)

    N = 10
    print('Differential Evolution (pop. size {})'.format(
        island.get_population().get_f().size))
    for k in range(N):
        island.evolve()
        island.wait()
        d = sqrt(
            float(((island.get_population().champion_x -
                    rosenbrock(5).best_known())**2).mean()))
        print('DE {:2}/{}: best fitness {:9.2f}, deviation {:9.2f}, fevals {}'.
              format(k, N, float(island.get_population().champion_f[0]), d,
                     island.get_population().problem.get_fevals()))
Exemple #2
0
def benchmark_simulated_annealing():
    island = pg_island(algo=simulated_annealing(Ts=1., Tf=.01),
                       prob=problem(rosenbrock(5)),
                       size=10)

    N = 10
    print('Simulated Annealing (pop. size {})'.format(
        island.get_population().get_f().size))
    for k in range(N):
        island.evolve()
        island.wait()
        d = sqrt(
            float(((island.get_population().champion_x -
                    rosenbrock(5).best_known())**2).mean()))
        print('SA {:2}/{}: best fitness {:9.2f}, deviation {:9.2f}, fevals {}'.
              format(k, N, float(island.get_population().champion_f[0]), d,
                     island.get_population().problem.get_fevals()))
Exemple #3
0
def benchmark_differential_evolution(generations):
    island = pg_island(
        algo=de(gen=generations),
        prob=B2_UDP(getLowerBound(),getUpperBound(),'../../../../../sbml/b2.xml'),
        size=10)

    N = 50
    import arrow
    time_start = arrow.utcnow()
    print('Differential Evolution (pop. size {})'.format(island.get_population().get_f().size))
    for k in range(N):
        island.evolve()
        island.wait()
        delta_t = arrow.utcnow() - time_start
        print('DE {:2}/{}: best fitness {:9.2f}, fevals {}, duration {}'.format(
            k,N,float(island.get_population().champion_f[0]),
            island.get_population().problem.get_fevals(),
            delta_t))
Exemple #4
0
def benchmark_simulated_annealing():
    island = pg_island(
        algo=simulated_annealing(Ts=1.,Tf=.01),
        prob=problem(B2_UDP(getLowerBound(),getUpperBound(),'../../../../../sbml/b2.xml')),
        size=10)

    N = 10
    import arrow
    time_start = arrow.utcnow()
    print('Simulated Annealing (pop. size {})'.format(island.get_population().get_f().size))
    for k in range(N):
        island.evolve()
        island.wait()
        delta_t = arrow.utcnow() - time_start
        print('SA {:2}/{}: best fitness {:9.2f}, fevals {}, duration {}'.format(
            k,N,float(island.get_population().champion_f[0]),
            island.get_population().problem.get_fevals(),
            delta_t))