Exemple #1
0
    def _compute_taylor_order_terms(self, order, max_polynomial_vars, gpindices_array):  # separated for profiling
        terms = []
        if len(self.factorops) > 0:
            for p in _lt.partition_into(order, len(self.factorops)):
                factor_lists = [self.factorops[i].taylor_order_terms(pi, max_polynomial_vars) for i, pi in enumerate(p)]
                for factors in _itertools.product(*factor_lists):
                    terms.append(_term.compose_terms(factors))
        elif order == 0:  # special case: ComposedOp with no factors == identity
            identityTerm = _term.RankOnePolynomialOpTerm.create_from(_Polynomial({(): 1.0}, max_polynomial_vars),
                                                                     None, None, self._evotype, self.state_space)
            terms.append(identityTerm)

        self.terms[order] = terms

        #def _decompose_indices(x):
        #    return tuple(_modelmember._decompose_gpindices(
        #        self.gpindices, _np.array(x, _np.int64)))

        mapvec = _np.ascontiguousarray(_np.zeros(max_polynomial_vars, _np.int64))
        for ii, i in enumerate(gpindices_array):
            mapvec[i] = ii

        #poly_coeffs = [t.coeff.map_indices(_decompose_indices) for t in terms]  # with *local* indices
        poly_coeffs = [t.coeff.mapvec_indices(mapvec) for t in terms]  # with *local* indices
        tapes = [poly.compact(complex_coeff_tape=True) for poly in poly_coeffs]
        if len(tapes) > 0:
            vtape = _np.concatenate([t[0] for t in tapes])
            ctape = _np.concatenate([t[1] for t in tapes])
        else:
            vtape = _np.empty(0, _np.int64)
            ctape = _np.empty(0, complex)
        coeffs_as_compact_polys = (vtape, ctape)
        self.local_term_poly_coeffs[order] = coeffs_as_compact_polys
Exemple #2
0
    def _compute_taylor_order_terms(
            self, order, max_polynomial_vars):  # separated for profiling

        mapvec = _np.ascontiguousarray(
            _np.zeros(max_polynomial_vars, _np.int64))
        for ii, i in enumerate(self.gpindices_as_array()):
            mapvec[ii] = i

        def _compose_poly_indices(terms):
            for term in terms:
                #term.map_indices_inplace(lambda x: tuple(_modelmember._compose_gpindices(
                #    self.gpindices, _np.array(x, _np.int64))))
                term.mapvec_indices_inplace(mapvec)
            return terms

        assert (self.gpindices
                is not None), "LindbladOp must be added to a Model before use!"
        mpv = max_polynomial_vars

        #Note: for now, *all* of an error generator's terms are considered 0-th order,
        # so the below call to taylor_order_terms just gets all of them.  In the FUTURE
        # we might want to allow a distinction among the error generator terms, in which
        # case this term-exponentiation step will need to become more complicated...
        postTerm = _term.RankOnePolynomialOpTerm.create_from(
            _Polynomial({(): 1.0}, mpv), None, None, self._evotype,
            self.state_space)  # identity
        loc_terms = _term.exponentiate_terms(
            self.errorgen.taylor_order_terms(0, max_polynomial_vars), order,
            postTerm, self.exp_terms_cache)
        #OLD: loc_terms = [ t.collapse() for t in loc_terms ] # collapse terms for speed

        poly_coeffs = [t.coeff for t in loc_terms]
        tapes = [poly.compact(complex_coeff_tape=True) for poly in poly_coeffs]
        if len(tapes) > 0:
            vtape = _np.concatenate([t[0] for t in tapes])
            ctape = _np.concatenate([t[1] for t in tapes])
        else:
            vtape = _np.empty(0, _np.int64)
            ctape = _np.empty(0, complex)
        coeffs_as_compact_polys = (vtape, ctape)
        self.local_term_poly_coeffs[order] = coeffs_as_compact_polys

        # only cache terms with *global* indices to avoid confusion...
        self.terms[order] = _compose_poly_indices(loc_terms)
Exemple #3
0
    def taylor_order_terms(self, order, max_polynomial_vars=100, return_coeff_polys=False):
        """
        Get the `order`-th order Taylor-expansion terms of this state vector.

        This function either constructs or returns a cached list of the terms at
        the given order.  Each term is "rank-1", meaning that it is a state
        preparation followed by or POVM effect preceded by actions on a
        density matrix `rho` of the form:

        `rho -> A rho B`

        The coefficients of these terms are typically polynomials of the
        State's parameters, where the polynomial's variable indices index the
        *global* parameters of the State's parent (usually a :class:`Model`)
        , not the State's local parameter array (i.e. that returned from
        `to_vector`).

        Parameters
        ----------
        order : int
            The order of terms to get.

        max_polynomial_vars : int, optional
            maximum number of variables the created polynomials can have.

        return_coeff_polys : bool
            Whether a parallel list of locally-indexed (using variable indices
            corresponding to *this* object's parameters rather than its parent's)
            polynomial coefficients should be returned as well.

        Returns
        -------
        terms : list
            A list of :class:`RankOneTerm` objects.
        coefficients : list
            Only present when `return_coeff_polys == True`.
            A list of *compact* polynomial objects, meaning that each element
            is a `(vtape,ctape)` 2-tuple formed by concatenating together the
            output of :method:`Polynomial.compact`.
        """
        if order == 0:  # only 0-th order term exists (assumes static pure_state_vec)
            coeff = _Polynomial({(): 1.0}, max_polynomial_vars)
            #if self._prep_or_effect == "prep":
            terms = [_term.RankOnePolynomialPrepTerm.create_from(coeff, self, self,
                                                                 self._evotype, self.state_space)]
            #else:
            #    terms = [_term.RankOnePolynomialEffectTerm.create_from(coeff, purevec, purevec,
            #                                                           self._evotype, self.state_space)]

            if return_coeff_polys:
                coeffs_as_compact_polys = coeff.compact(complex_coeff_tape=True)
                return terms, coeffs_as_compact_polys
            else:
                return terms
        else:
            if return_coeff_polys:
                vtape = _np.empty(0, _np.int64)
                ctape = _np.empty(0, complex)
                return [], (vtape, ctape)
            else:
                return []
    def taylor_order_terms(self,
                           order,
                           max_polynomial_vars=100,
                           return_coeff_polys=False):
        """
        Get the `order`-th order Taylor-expansion terms of this operation.

        This function either constructs or returns a cached list of the terms at
        the given order.  Each term is "rank-1", meaning that its action on a
        density matrix `rho` can be written:

        `rho -> A rho B`

        The coefficients of these terms are typically polynomials of the operation's
        parameters, where the polynomial's variable indices index the *global*
        parameters of the operation's parent (usually a :class:`Model`), not the
        operation's local parameter array (i.e. that returned from `to_vector`).

        Parameters
        ----------
        order : int
            Which order terms (in a Taylor expansion of this :class:`LindbladOp`)
            to retrieve.

        max_polynomial_vars : int, optional
            maximum number of variables the created polynomials can have.

        return_coeff_polys : bool
            Whether a parallel list of locally-indexed (using variable indices
            corresponding to *this* object's parameters rather than its parent's)
            polynomial coefficients should be returned as well.

        Returns
        -------
        terms : list
            A list of :class:`RankOneTerm` objects.
        coefficients : list
            Only present when `return_coeff_polys == True`.
            A list of *compact* polynomial objects, meaning that each element
            is a `(vtape,ctape)` 2-tuple formed by concatenating together the
            output of :method:`Polynomial.compact`.
        """
        #Same as unitary op -- assume this op acts as a single unitary term -- consolidate in FUTURE?
        if order == 0:  # only 0-th order term exists
            coeff = _Polynomial({(): 1.0}, max_polynomial_vars)
            terms = [
                _term.RankOnePolynomialOpTerm.create_from(
                    coeff, self, self, self._evotype, self.state_space)
            ]
            if return_coeff_polys:
                coeffs_as_compact_polys = coeff.compact(
                    complex_coeff_tape=True)
                return terms, coeffs_as_compact_polys
            else:
                return terms
        else:
            if return_coeff_polys:
                vtape = _np.empty(0, _np.int64)
                ctape = _np.empty(0, complex)
                return [], (vtape, ctape)
            else:
                return []
Exemple #5
0
    def taylor_order_terms_above_mag(self, order, max_polynomial_vars,
                                     min_term_mag):
        """
        Get the `order`-th order Taylor-expansion terms of this operation that have magnitude above `min_term_mag`.

        This function constructs the terms at the given order which have a magnitude (given by
        the absolute value of their coefficient) that is greater than or equal to `min_term_mag`.
        It calls :method:`taylor_order_terms` internally, so that all the terms at order `order`
        are typically cached for future calls.

        The coefficients of these terms are typically polynomials of the operation's
        parameters, where the polynomial's variable indices index the *global*
        parameters of the operation's parent (usually a :class:`Model`), not the
        operation's local parameter array (i.e. that returned from `to_vector`).

        Parameters
        ----------
        order : int
            The order of terms to get (and filter).

        max_polynomial_vars : int, optional
            maximum number of variables the created polynomials can have.

        min_term_mag : float
            the minimum term magnitude.

        Returns
        -------
        list
            A list of :class:`Rank1Term` objects.
        """
        mapvec = _np.ascontiguousarray(
            _np.zeros(max_polynomial_vars, _np.int64))
        for ii, i in enumerate(self.gpindices_as_array()):
            mapvec[ii] = i

        assert (self.gpindices
                is not None), "LindbladOp must be added to a Model before use!"
        mpv = max_polynomial_vars

        postTerm = _term.RankOnePolynomialOpTerm.create_from(
            _Polynomial({(): 1.0}, mpv), None, None, self._evotype,
            self.state_space)  # identity term
        postTerm = postTerm.copy_with_magnitude(1.0)
        #Note: for now, *all* of an error generator's terms are considered 0-th order,
        # so the below call to taylor_order_terms just gets all of them.  In the FUTURE
        # we might want to allow a distinction among the error generator terms, in which
        # case this term-exponentiation step will need to become more complicated...
        errgen_terms = self.errorgen.taylor_order_terms(0, max_polynomial_vars)

        #DEBUG CHECK MAGS OF ERRGEN COEFFS
        #poly_coeffs = [t.coeff for t in errgen_terms]
        #tapes = [poly.compact(complex_coeff_tape=True) for poly in poly_coeffs]
        #if len(tapes) > 0:
        #    vtape = _np.concatenate([t[0] for t in tapes])
        #    ctape = _np.concatenate([t[1] for t in tapes])
        #else:
        #    vtape = _np.empty(0, _np.int64)
        #    ctape = _np.empty(0, complex)
        #v = self.to_vector()
        #errgen_coeffs = _bulk_eval_compact_polynomials_complex(
        #    vtape, ctape, v, (len(errgen_terms),))  # an array of coeffs
        #for coeff, t in zip(errgen_coeffs, errgen_terms):
        #    coeff2 = t.coeff.evaluate(v)
        #    if not _np.isclose(coeff,coeff2):
        #        assert(False), "STOP"
        #    t.set_magnitude(abs(coeff))

        #evaluate errgen_terms' coefficients using their local vector of parameters
        # (which happends to be the same as our paramvec in this case)
        egvec = self.errorgen.to_vector(
        )  # we need errorgen's vector (usually not in rep) to perform evaluation
        errgen_terms = [
            egt.copy_with_magnitude(abs(egt.coeff.evaluate(egvec)))
            for egt in errgen_terms
        ]

        terms = []
        for term in _term.exponentiate_terms_above_mag(
                errgen_terms, order, postTerm, min_term_mag=min_term_mag):
            #poly_coeff = term.coeff
            #compact_poly_coeff = poly_coeff.compact(complex_coeff_tape=True)
            term.mapvec_indices_inplace(mapvec)  # local -> global indices

            # DEBUG CHECK - to ensure term magnitudes are being set correctly (i.e. are in sync with evaluated coeffs)
            # t = term
            # vt, ct = t._rep.coeff.compact_complex()
            # coeff_array = _bulk_eval_compact_polynomials_complex(vt, ct, self.parent.to_vector(), (1,))
            # if not _np.isclose(abs(coeff_array[0]), t._rep.magnitude):  # DEBUG!!!
            #     print(coeff_array[0], "vs.", t._rep.magnitude)
            #     import bpdb; bpdb.set_trace()
            #     c1 = _Polynomial.from_rep(t._rep.coeff)

            terms.append(term)
        return terms
Exemple #6
0
    def taylor_order_terms(self,
                           order,
                           max_polynomial_vars=100,
                           return_coeff_polys=False):
        """
        Get the `order`-th order Taylor-expansion terms of this operation.

        This function either constructs or returns a cached list of the terms at
        the given order.  Each term is "rank-1", meaning that its action on a
        density matrix `rho` can be written:

        `rho -> A rho B`

        The coefficients of these terms are typically polynomials of the operation's
        parameters, where the polynomial's variable indices index the *global*
        parameters of the operation's parent (usually a :class:`Model`), not the
        operation's local parameter array (i.e. that returned from `to_vector`).

        Parameters
        ----------
        order : int
            Which order terms (in a Taylor expansion of this :class:`LindbladOp`)
            to retrieve.

        max_polynomial_vars : int, optional
            maximum number of variables the created polynomials can have.

        return_coeff_polys : bool
            Whether a parallel list of locally-indexed (using variable indices
            corresponding to *this* object's parameters rather than its parent's)
            polynomial coefficients should be returned as well.

        Returns
        -------
        terms : list
            A list of :class:`RankOneTerm` objects.
        coefficients : list
            Only present when `return_coeff_polys == True`.
            A list of *compact* polynomial objects, meaning that each element
            is a `(vtape,ctape)` 2-tuple formed by concatenating together the
            output of :method:`Polynomial.compact`.
        """
        def _compose_poly_indices(terms):
            for term in terms:
                term.map_indices_inplace(lambda x: tuple(
                    _modelmember._compose_gpindices(self.gpindices,
                                                    _np.array(x, _np.int64))))
            return terms

        IDENT = None  # sentinel for the do-nothing identity op
        mpv = max_polynomial_vars
        if order == 0:
            polydict = {(): 1.0}
            for pd in self._get_rate_poly_dicts():
                polydict.update({
                    k: -v
                    for k, v in pd.items()
                })  # subtracts the "rate" `pd` from `polydict`
            loc_terms = [
                _term.RankOnePolynomialOpTerm.create_from(
                    _Polynomial(polydict, mpv), IDENT, IDENT, self._evotype,
                    self.state_space)
            ]

        elif order == 1:
            loc_terms = [
                _term.RankOnePolynomialOpTerm.create_from(
                    _Polynomial(pd, mpv), bel, bel, self._evotype,
                    self.state_space) for i, (pd, bel) in enumerate(
                        zip(self.rate_poly_dicts, self.basis.elements[1:]))
            ]
        else:
            loc_terms = []  # only first order "taylor terms"

        poly_coeffs = [t.coeff for t in loc_terms]
        tapes = [poly.compact(complex_coeff_tape=True) for poly in poly_coeffs]
        if len(tapes) > 0:
            vtape = _np.concatenate([t[0] for t in tapes])
            ctape = _np.concatenate([t[1] for t in tapes])
        else:
            vtape = _np.empty(0, _np.int64)
            ctape = _np.empty(0, complex)
        coeffs_as_compact_polys = (vtape, ctape)

        local_term_poly_coeffs = coeffs_as_compact_polys
        global_param_terms = _compose_poly_indices(loc_terms)

        if return_coeff_polys:
            return global_param_terms, local_term_poly_coeffs
        else:
            return global_param_terms