def test_Constructor(self): import numpy import pymarocco marocco = pymarocco.PyMarocco() marocco.calib_backend = pymarocco.PyMarocco.CalibBackend.Default pynn.setup(marocco=marocco) N = 10 model = pynn.IF_cond_exp selector = numpy.array( [random.choice([True, False]) for x in range(0, N)]) pop = pynn.Population(N, model) pv = pynn.PopulationView(pop, selector) self.assertEqual(len(pv), len(numpy.where(selector == True)[0])) # now a selection with wrong size is given wrong_selector = numpy.array( [random.choice([True, False]) for x in range(0, 2 * N)]) with self.assertRaises(RuntimeError): pv = pynn.PopulationView(pop, wrong_selector) pynn.run(100)
def test(self): wafer = 99999 # a wafer for which no redman data is availale hicann = 82 neuron_number = 12 marocco = PyMarocco() marocco.neuron_placement.default_neuron_size(4) marocco.backend = PyMarocco.Without marocco.default_wafer = C.Wafer(wafer) used_hicann = C.HICANNGlobal(C.HICANNOnWafer(Enum(hicann)), C.Wafer(wafer)) used_hicann # prevent pep8 warning of unused variable pynn.setup(marocco=marocco) pop = pynn.Population(1, pynn.IF_cond_exp) topleft = C.NeuronOnWafer(C.NeuronOnHICANN(X(neuron_number), Y(0)), C.HICANNOnWafer(Enum(hicann))) logical_neuron = LogicalNeuron.rectangular(topleft, size=4) marocco.manual_placement.on_neuron(pop, logical_neuron) with self.assertRaises(RuntimeError): pynn.run(0) pynn.end()
def test_access_queue(self): """use queue handling""" class myPlacer(placer): def loop(self): print("reversing populations") # b = self.m_queue.access; # use this or the following print((dir(self.m_queue.value()[0]))) b = self.m_queue.value() print((dir(b))) marocco = self.marocco user_strat = myPlacer() marocco.neuron_placement.default_placement_strategy(user_strat) pynn.setup(marocco=marocco) self.network() result = self.load_results() hicann = C.HICANNOnWafer(Enum(42)) nb = C.NeuronBlockOnHICANN(Enum(4)) for pop in self.pops: for nrn in pop: placement_item, = result.placement.find(nrn) logical_neuron = placement_item.logical_neuron() for denmem in logical_neuron: # all pops shall be on different NBs self.assertFalse(nb == denmem.toNeuronBlockOnHICANN() and hicann == denmem.toHICANNOnWafer()) nb = denmem.toNeuronBlockOnHICANN() hicann = denmem.toHICANNOnWafer()
def test_get_denmems(self): pop_size = 2 for neuron_size in [4, 8, 12, 16, 32]: self.marocco.neuron_placement.default_neuron_size(neuron_size) pynn.setup(marocco=self.marocco) target = pynn.Population(pop_size, pynn.IF_cond_exp, {}) populations = [target] for i in range(3): p1 = pynn.Population(pop_size, pynn.SpikeSourceArray, {'spike_times': [1.]}) p2 = pynn.Population(pop_size, pynn.IF_cond_exp, {}) pynn.Projection(p1, target, pynn.OneToOneConnector(weights=0.004)) pynn.Projection(p2, target, pynn.OneToOneConnector(weights=0.004)) populations.append(p2) pynn.run(0) pynn.end() mapstats = self.marocco.getStats() results = Marocco.from_file(self.marocco.persist) for pop in populations: for nrn in range(pop_size): for item in results.placement.find(pop[nrn]): self.assertFalse(item.logical_neuron().is_external()) self.assertEqual(neuron_size, item.logical_neuron().size())
def test_popview_on_hicann(self, size): pynn.setup(marocco=self.marocco) neuron_size = 4 self.marocco.neuron_placement.default_neuron_size(neuron_size) hicann = C.HICANNOnWafer(Enum(122)) hicann_1 = C.HICANNOnWafer(Enum(123)) hicann_2 = C.HICANNOnWafer(Enum(124)) hicann_3 = C.HICANNOnWafer(Enum(125)) pop = pynn.Population(size, pynn.IF_cond_exp, {}) pop_1 = pynn.Population(size, pynn.IF_cond_exp, {}) pop_view = pynn.PopulationView(pop,list(range(0,size,2))) pop_view_1 = pynn.PopulationView(pop,list(range(1,size,2))) pop_1_view = pynn.PopulationView(pop_1,list(range(1,size//2))) pop_1_view_1 = pynn.PopulationView(pop_1,list(range(size-2,size//2,-1))) pop_auto_placement = pynn.PopulationView(pop_1,[0,size//2,size-1]) self.marocco.manual_placement.on_hicann(pop_view, hicann) self.marocco.manual_placement.on_hicann(pop_view_1, hicann_1) self.marocco.manual_placement.on_hicann(pop_1_view, hicann_2) self.marocco.manual_placement.on_hicann(pop_1_view_1, hicann_3) if neuron_size * size//2 > C.NeuronOnHICANN.enum_type.size: with self.assertRaises(RuntimeError): pynn.run(0) pynn.end() return pynn.run(0) pynn.end() results = self.load_results() for nrn in pop_view: placement_item, = results.placement.find(nrn) logical_neuron = placement_item.logical_neuron() for denmem in logical_neuron: self.assertEqual(hicann, denmem.toHICANNOnWafer()) for nrn in pop_view_1: placement_item, = results.placement.find(nrn) logical_neuron = placement_item.logical_neuron() for denmem in logical_neuron: self.assertEqual(hicann_1, denmem.toHICANNOnWafer()) for nrn in pop_1_view: placement_item, = results.placement.find(nrn) logical_neuron = placement_item.logical_neuron() for denmem in logical_neuron: self.assertEqual(hicann_2, denmem.toHICANNOnWafer()) for nrn in pop_1_view_1: placement_item, = results.placement.find(nrn) logical_neuron = placement_item.logical_neuron() for denmem in logical_neuron: self.assertEqual(hicann_3, denmem.toHICANNOnWafer()) for nrn in pop_auto_placement: placement_item, = results.placement.find(nrn) logical_neuron = placement_item.logical_neuron() for denmem in logical_neuron: self.assertIsNotNone(denmem.toHICANNOnWafer())
def test_popview_on_neuron(self): pynn.setup(marocco=self.marocco) pop = pynn.Population(4, pynn.IF_cond_exp, {}) neuron_block = C.NeuronBlockOnWafer(C.NeuronBlockOnHICANN(3)) neuron_block_1 = C.NeuronBlockOnWafer(C.NeuronBlockOnHICANN(2)) logical_neuron = (LogicalNeuron.on(neuron_block) .add(C.NeuronOnNeuronBlock(X(3), Y(0)), 2) .add(C.NeuronOnNeuronBlock(X(3), Y(1)), 2) .done()) logical_neuron_1 = (LogicalNeuron.on(neuron_block_1) .add(C.NeuronOnNeuronBlock(X(4), Y(0)), 2) .add(C.NeuronOnNeuronBlock(X(4), Y(1)), 2) .done()) popview = pynn.PopulationView(pop,[0]) popview_1 = pynn.PopulationView(pop,[2]) popview_auto_placement= pynn.PopulationView(pop,[1,3]) self.marocco.manual_placement.on_neuron(popview, logical_neuron) self.marocco.manual_placement.on_neuron(popview_1, logical_neuron_1) pynn.run(0) pynn.end() results = self.load_results() placement_item, = results.placement.find(popview[0]) self.assertEqual(logical_neuron, placement_item.logical_neuron()) placement_item, = results.placement.find(popview_1[0]) self.assertEqual(logical_neuron_1, placement_item.logical_neuron()) for nrn in popview_auto_placement: placement_item, = results.placement.find(nrn) self.assertIsNotNone(placement_item.logical_neuron())
def test(self): import pyhmf as pynn from pymarocco import PyMarocco import pylogging, pyhalbe pyhalbe.Debug.change_loglevel(2) pylogging.set_loglevel(pylogging.get("marocco"), pylogging.LogLevel.TRACE) pylogging.set_loglevel(pylogging.get("sthal"), pylogging.LogLevel.DEBUG) marocco = PyMarocco() marocco.neuron_placement.default_neuron_size(4) pynn.setup(marocco=marocco) neuron1 = pynn.Population(1, pynn.IF_cond_exp) inh = pynn.Population(1, pynn.SpikeSourceArray, {'spike_times': [0]}) exc = pynn.Population(1, pynn.SpikeSourceArray, {'spike_times': [0]}) exc_2 = pynn.Population(1, pynn.SpikeSourceArray, {'spike_times': [0]}) exc_3 = pynn.Population(1, pynn.SpikeSourceArray, {'spike_times': [0]}) c_exc = pynn.FixedProbabilityConnector(p_connect=1.0, weights=1) proj1 = pynn.Projection(inh, neuron1, c_exc, target='excitatory') proj2 = pynn.Projection(exc, neuron1, c_exc, target='excitatory') proj3 = pynn.Projection(exc_2, neuron1, c_exc, target='excitatory') proj4 = pynn.Projection(exc_3, neuron1, c_exc, target='inhibitory') pynn.run(10000) pynn.end()
def __init__(self, marocco, linearsize, dimension, kbiasneurons, nbiasneurons, nsources, ksources, duplicates, sourcerate, model=pynn.IF_cond_exp): # size of the edge of the lattice self.linearsize = linearsize # dimension of the lattice self.dimension = dimension # number of bias neurons projecting onto each network neuron # (might be needed for scaling) self.kbiasneurons = kbiasneurons # total number of bias neurons, must be an integer multiple of k # should help synapse loss self.nbiasneurons = nbiasneurons # size of the noise network self.nsources = nsources # number of excitatory and inhibitory source projecting onto each # neuron self.ksources = ksources # number of connections between neighboring neurons self.duplicates = duplicates self.model = model self.marocco = marocco pynn.setup(marocco=self.marocco)
def test_with_size(self): pynn.setup(marocco=self.marocco) default_size = 4 self.marocco.neuron_placement.default_neuron_size(default_size) sizes = {} pop = pynn.Population(1, pynn.IF_cond_exp, {}) sizes[pop] = default_size pop = pynn.Population(1, pynn.IF_cond_exp, {}) self.marocco.manual_placement.with_size(pop, 2) sizes[pop] = 2 pop = pynn.Population(1, pynn.IF_cond_exp, {}) self.marocco.manual_placement.with_size(pop, 6) sizes[pop] = 6 pynn.run(0) pynn.end() results = self.load_results() for pop, size in sizes.items(): placement_item, = results.placement.find(pop[0]) logical_neuron = placement_item.logical_neuron() self.assertEqual(size, logical_neuron.size())
def test_on_neuron_block(self, size): pynn.setup(marocco=self.marocco) neuron_size = 4 self.marocco.neuron_placement.default_neuron_size(neuron_size) neuron_block = C.NeuronBlockOnWafer(C.NeuronBlockOnHICANN(3)) pop = pynn.Population(size, pynn.IF_cond_exp, {}) self.marocco.manual_placement.on_neuron_block(pop, neuron_block) if neuron_size * size > C.NeuronOnNeuronBlock.enum_type.size: with self.assertRaises(RuntimeError): pynn.run(0) pynn.end() return pynn.run(0) pynn.end() results = self.load_results() for nrn in pop: placement_item, = results.placement.find(nrn) logical_neuron = placement_item.logical_neuron() self.assertEqual(neuron_size, logical_neuron.size()) for denmem in logical_neuron: self.assertEqual(neuron_block, denmem.toNeuronBlockOnWafer())
def test_binomial_distribution(self): import pyhmf as pynn pynn.setup() rng = pynn.NativeRNG() self.assertEqual(rng.next( distribution = "binomial", parameters = [100, 1.]), 100)
def test_on_neurons(self, pop_size): pynn.setup(marocco=self.marocco) pop = pynn.Population(pop_size, pynn.IF_cond_exp, {}) neuron_block = C.NeuronBlockOnWafer(C.NeuronBlockOnHICANN(3)) logical_neurons = [ (LogicalNeuron.on(neuron_block) .add(C.NeuronOnNeuronBlock(X(3), Y(0)), 2) .add(C.NeuronOnNeuronBlock(X(3), Y(1)), 2) .done()), (LogicalNeuron.on(neuron_block) .add(C.NeuronOnNeuronBlock(X(11), Y(0)), 2) .add(C.NeuronOnNeuronBlock(X(11), Y(1)), 2) .done()), ] self.marocco.manual_placement.on_neuron(pop, logical_neurons) if pop_size != len(logical_neurons): with self.assertRaises(RuntimeError): pynn.run(0) pynn.end() return pynn.run(0) pynn.end() results = self.load_results() for nrn, logical_neuron in zip(pop, logical_neurons): placement_item, = results.placement.find(nrn) self.assertEqual(logical_neuron, placement_item.logical_neuron())
def __init__(self, N, prob, marocco, model=pynn.EIF_cond_exp_isfa_ista): self.N = N self.prob = prob self.model = model self.marocco = marocco pynn.setup(marocco=self.marocco)
def random_network(self): pynn.setup(marocco=self.marocco) NUM_POPS = random.randint(10, 100) POP_SIZE = random.randint(1, 100) PROJ_PROB = 0.2 pops = [ pynn.Population(POP_SIZE, pynn.EIF_cond_exp_isfa_ista) for x in range(NUM_POPS) ] connector = pynn.AllToAllConnector( allow_self_connections=True, weights=1.) for src in pops: for trg in pops: target_type = 'inhibitory' if random.random() < 0.2 else 'excitatory' if random.random() < PROJ_PROB: pynn.Projection(src, trg, connector, target=target_type) pynn.run(1) pynn.end() stats = self.marocco.getStats() print("python synapse loss: ", stats.getSynapseLoss())
def build_network(num_pops, pop_size, marocco): from pymarocco import PyMarocco import pyhmf as pynn logging.info("num_pops: %d, pop_size: %d, total size: %d" % (num_pops, pop_size, num_pops * pop_size)) pynn.setup(marocco=marocco) pops = [ pynn.Population(pop_size, pynn.EIF_cond_exp_isfa_ista) for x in range(num_pops) ] for idx, pop in enumerate(pops): connector = pynn.AllToAllConnector(allow_self_connections=True, weights=1.) # build ring like network topology pynn.Projection(pop, pops[(idx + 1) % len(pops)], connector, target='excitatory') # add poisson stimulus source = pynn.Population(1, pynn.SpikeSourcePoisson, {'rate': 2}) pynn.Projection(source, pop, connector, target='excitatory') pynn.run(1) pynn.end() stats = marocco.getStats() loss = float(stats.getSynapseLoss()) / stats.getSynapses() return (num_pops, pop_size, loss)
def test_hw_merging_spl1_should_merge_some(self): """ some DNCs shall be merged, but not all, because of syndriver requirements on each NB. 2 neurons will be placed (same HICANN). A fully connected network is built. This results in 8*2 = 16 synapses being routed to each neuron. With neuron size 4 and chain length 3 -> 12 synapses can be realised on each neuron. As a result at maximum 12 synapses shall be on the same L1Route. The merger tries to merge them and will fail, then spit it and merge 8 to each merger [3,5]. The result is a better L1 utilisation compared to one-to-one mapping, 2 instead of 8 routes, while staying within hardware constrains, compared to merge all (16 synapses requiring 4 drivers, 1 driver will be lost). """ pynn.setup(marocco=self.marocco) neuron_size = 4 self.marocco.neuron_placement.default_neuron_size(neuron_size) self.marocco.merger_routing.strategy( self.marocco.merger_routing.minimize_as_possible) # restrict to 3 driver, so that this test is hardware agnostic self.marocco.synapse_routing.driver_chain_length(3) hicann = C.HICANNOnWafer(Enum(123)) pops = [] # All but the first neuron block are occupied. for nb in range(C.NeuronBlockOnHICANN.end): pop = pynn.Population(2, pynn.IF_cond_exp, {}) self.marocco.manual_placement.on_neuron_block( pop, C.NeuronBlockOnWafer(C.NeuronBlockOnHICANN(nb), hicann)) pops.append(pop) for p in pops: for other_p in pops: pynn.Projection(p, other_p, pynn.AllToAllConnector(weights=1.)) pynn.run(0) pynn.end() merged_dncs = [3, 3, 3, 3, 5, 5, 5, 5] results = self.load_results() for pop in pops: nrn = pop[0] placement_item, = results.placement.find(nrn) logical_neuron = placement_item.logical_neuron() self.assertEqual(neuron_size, logical_neuron.size()) for denmem in logical_neuron: self.assertEqual(hicann, denmem.toHICANNOnWafer()) address = placement_item.address() # some DNCs shall be merged. dnc = C.DNCMergerOnHICANN(merged_dncs[pop.euter_id()]) self.assertEqual(hicann, address.toHICANNOnWafer()) self.assertEqual(dnc, address.toDNCMergerOnHICANN()) self.assertEqual(C.DNCMergerOnWafer(dnc, hicann), address.toDNCMergerOnWafer())
def test_distribution_clip(self): import pyhmf as pynn pynn.setup() r = pynn.NativeRNG(0) d = pynn.RandomDistribution("uniform", [0.0, 25.0], r, (12.5, 12.5), "clip") assert_array_equal(d.next(100), numpy.ones(100) * 12.5)
def __init__(self, N, K, L, marocco, model=pynn.EIF_cond_exp_isfa_ista): self.N = N self.K = K self.L = L self.model = model self.marocco = marocco pynn.setup(marocco=self.marocco)
def __init__(self, num_layers, conn_prob, neurons_per_layer, marocco, model=pynn.EIF_cond_exp_isfa_ista): self.neurons_per_layer = neurons_per_layer self.num_layers = num_layers self.conn_prob = conn_prob self.model = model self.marocco = marocco pynn.setup(marocco=self.marocco)
def test_creation(self, strategy): self.marocco.neuron_placement.default_placement_strategy(strategy) pynn.setup(marocco=self.marocco) self.network() self.assertTrue(1 == 1)
def __init__(self, Nvisible, Nhidden, marocco, model=pynn.EIF_cond_exp_isfa_ista): self.Nvisible = Nvisible self.Nhidden = Nhidden self.model = model self.marocco = marocco pynn.setup(marocco=self.marocco)
def test_min_spl1_should_allow_external_input_on_same_chip(self): """ Even when the rightmost neuron block / DNC merger is not reserved for external input, it should be possible to place external input on the same chip. """ pynn.setup(marocco=self.marocco) neuron_size = 4 self.marocco.neuron_placement.default_neuron_size(neuron_size) self.marocco.merger_routing.strategy( self.marocco.merger_routing.minimize_number_of_sending_repeaters) # Do not reserve rightmost neuron block / DNC merger for external input. self.marocco.neuron_placement.restrict_rightmost_neuron_blocks(False) hicann = C.HICANNOnWafer(C.Enum(123)) pops = [] # All but the first neuron block are occupied. for nb in range(1, C.NeuronBlockOnHICANN.end): pop = pynn.Population(1, pynn.IF_cond_exp, {}) self.marocco.manual_placement.on_neuron_block( pop, C.NeuronBlockOnWafer(C.NeuronBlockOnHICANN(nb), hicann)) pops.append(pop) in_pop = pynn.Population(1, pynn.SpikeSourceArray, {}) self.marocco.manual_placement.on_hicann(in_pop, hicann) pynn.run(0) pynn.end() results = self.load_results() for pop in pops: nrn = pop[0] placement_item, = results.placement.find(nrn) logical_neuron = placement_item.logical_neuron() self.assertEqual(neuron_size, logical_neuron.size()) for denmem in logical_neuron: self.assertEqual(hicann, denmem.toHICANNOnWafer()) address = placement_item.address() # All used neuron blocks should be connected to a single DNC merger. dnc = C.DNCMergerOnHICANN(3) self.assertEqual(hicann, address.toHICANNOnWafer()) self.assertEqual(dnc, address.toDNCMergerOnHICANN()) self.assertEqual(C.DNCMergerOnWafer(dnc, hicann), address.toDNCMergerOnWafer()) nrn = in_pop[0] placement_item, = results.placement.find(nrn) logical_neuron = placement_item.logical_neuron() self.assertTrue(logical_neuron.is_external()) address = placement_item.address() # External input should be on the leftmost DNC merger, since all other # mergers do not have direct access to a background generator. dnc = C.DNCMergerOnHICANN(0) self.assertEqual(hicann, address.toHICANNOnWafer()) self.assertEqual(dnc, address.toDNCMergerOnHICANN()) self.assertEqual(C.DNCMergerOnWafer(dnc, hicann), address.toDNCMergerOnWafer())
def test_L1_detour_at_side_switch_usage(self): """ [155] 191 [223] 224 225 x226x {227} test detour and predecessor settings at the edge of a wafer """ pylogging.set_loglevel(pylogging.get("marocco"), pylogging.LogLevel.TRACE) pylogging.set_loglevel(pylogging.get("Calibtic"), pylogging.LogLevel.ERROR) self.marocco.persist = '' # or add test suite TestWithRuntime? runtime = Runtime(self.marocco.default_wafer) pynn.setup(marocco=self.marocco, marocco_runtime=runtime) settings = pysthal.Settings.get() settings.synapse_switches.max_switches_per_column_per_side = 1 settings.crossbar_switches.max_switches_per_row = 1 source = pynn.Population(1, pynn.IF_cond_exp, {}) target1 = pynn.Population(1, pynn.IF_cond_exp, {}) target2 = pynn.Population(1, pynn.IF_cond_exp, {}) proj = pynn.Projection( source, target1, pynn.AllToAllConnector(weights=1.)) proj = pynn.Projection( source, target2, pynn.AllToAllConnector(weights=1.)) source_hicann = C.HICANNOnWafer(Enum(227)) target1_hicann = C.HICANNOnWafer(Enum(155)) target2_hicann = C.HICANNOnWafer(Enum(225)) self.marocco.manual_placement.on_hicann(source, source_hicann) self.marocco.manual_placement.on_hicann(target1, target1_hicann) self.marocco.manual_placement.on_hicann(target2, target2_hicann) disabled_hicanns = [226, 263] wafer = self.marocco.default_wafer self.marocco.defects.set(pyredman.Wafer(runtime.wafer().index())) for hicann in C.iter_all(C.HICANNOnWafer): if hicann.toEnum().value() in disabled_hicanns: self.marocco.defects.wafer().hicanns().disable(C.HICANNGlobal(hicann, wafer)) continue pynn.run(0) pynn.end() for hicann in runtime.wafer().getAllocatedHicannCoordinates(): h = runtime.wafer()[hicann] print(hicann, h.check()) self.assertEqual(h.check(), "")
def test_projections(self): pynn.setup(marocco=self.marocco) target = pynn.Population(1, pynn.IF_cond_exp, {}) pop_a = pynn.Population(2, pynn.SpikeSourceArray, {'spike_times': [1.]}) pop_b = pynn.Population(1, pynn.SpikeSourceArray, {'spike_times': [2.]}) pop_ab = pynn.Assembly() pop_ab += pop_a pop_ab += pop_b con = pynn.AllToAllConnector(weights=0.004) proj_a = pynn.Projection(pop_a, target, con) proj_b = pynn.Projection(pop_b, target, con) proj_ab = pynn.Projection(pop_ab, target, con) pynn.run(0) pynn.end() results = self.load_results() synapses = results.synapse_routing.synapses() items_a = synapses.find(proj_a) self.assertEqual(2, len(items_a)) items_b = synapses.find(proj_b) self.assertEqual(1, len(items_b)) items_ab = synapses.find(proj_ab) self.assertEqual(3, len(items_ab)) def to_hw_synapses(items): hw_synapses = set() for item in items: synapse = item.hardware_synapse() if synapse: hw_synapses.add(synapse) return hw_synapses hw_a = to_hw_synapses(items_a) hw_b = to_hw_synapses(items_b) hw_ab = to_hw_synapses(items_ab) self.assertTrue(hw_a.isdisjoint(hw_b)) self.assertTrue(hw_a.isdisjoint(hw_ab)) self.assertTrue(hw_b.isdisjoint(hw_ab)) for source_neuron in pop_a: items = synapses.find(proj_ab, source_neuron, target[0]) self.assertEqual(1, len(items)) self.assertTrue(hw_ab.issuperset(to_hw_synapses(items))) for source_neuron in pop_b: items = synapses.find(proj_ab, source_neuron, target[0]) self.assertEqual(1, len(items)) self.assertTrue(hw_ab.issuperset(to_hw_synapses(items)))
def test_issue1565(self): # although there is only 1 synapse column per neuron (of size 2), a 2nd synapse is used self.marocco.neuron_placement.default_neuron_size(2) con = pynn.FixedProbabilityConnector(p_connect=1.0, weights=0.004) pynn.setup(marocco=self.marocco) pop1 = pynn.Population(10, pynn.IF_cond_exp, {}) ipu1 = pynn.Population(2, pynn.SpikeSourceArray, {'spike_times': []}) pro1 = pynn.Projection(ipu1, pop1, con, target='excitatory') pynn.run(0)
def setUp(self): super(MaroccoFixture, self).setUp() self.marocco = PyMarocco() self.marocco.backend = PyMarocco.Without self.marocco.calib_backend = PyMarocco.CalibBackend.Default self.marocco.defects.backend = Defects.Backend.Without self.marocco.merger_routing.strategy( self.marocco.merger_routing.minimize_number_of_sending_repeaters) sim.setup(marocco=self.marocco)
def test_min_spl1_is_nongreedy_when_pops_are_placed_to_nbs(self, nbs): """ See above. Instead of a single population placed to the HICANN, populations are placed to specific neuron blocks. """ pynn.setup(marocco=self.marocco) neuron_size = 4 self.marocco.neuron_placement.default_neuron_size(neuron_size) self.marocco.merger_routing.strategy( self.marocco.merger_routing.minimize_number_of_sending_repeaters) self.marocco.neuron_placement.restrict_rightmost_neuron_blocks(True) hicann = C.HICANNOnWafer(C.Enum(123)) pops = [] for nb in nbs: pop = pynn.Population(1, pynn.IF_cond_exp, {}) self.marocco.manual_placement.on_neuron_block( pop, C.NeuronBlockOnWafer(C.NeuronBlockOnHICANN(nb), hicann)) pops.append(pop) in_pop = pynn.Population(1, pynn.SpikeSourceArray, {}) self.marocco.manual_placement.on_hicann(in_pop, hicann) pynn.run(0) pynn.end() results = self.load_results() for pop in pops: nrn = pop[0] placement_item, = results.placement.find(nrn) logical_neuron = placement_item.logical_neuron() self.assertEqual(neuron_size, logical_neuron.size()) for denmem in logical_neuron: self.assertEqual(hicann, denmem.toHICANNOnWafer()) address = placement_item.address() # All used neuron blocks should still be connected to a single DNC merger. dnc = C.DNCMergerOnHICANN(3) self.assertEqual(hicann, address.toHICANNOnWafer()) self.assertEqual(dnc, address.toDNCMergerOnHICANN()) self.assertEqual(C.DNCMergerOnWafer(dnc, hicann), address.toDNCMergerOnWafer()) nrn = in_pop[0] placement_item, = results.placement.find(nrn) logical_neuron = placement_item.logical_neuron() self.assertTrue(logical_neuron.is_external()) address = placement_item.address() # External input should be on the rightmost DNC merger since that is tried first. dnc = C.DNCMergerOnHICANN(7) self.assertEqual(hicann, address.toHICANNOnWafer()) self.assertEqual(dnc, address.toDNCMergerOnHICANN()) self.assertEqual(C.DNCMergerOnWafer(dnc, hicann), address.toDNCMergerOnWafer())
def test_TwoNeuron(self): if True: pynn.setup(marocco=self.marocco) # create neuron with v_rest below v_thresh source = pynn.Population(1, pynn.EIF_cond_exp_isfa_ista, { 'v_rest': -50., 'v_thresh': -60., 'v_reset': -70.6, }) N = 8 # number of target populations p = [ pynn.Population(1, pynn.EIF_cond_exp_isfa_ista) for i in range(N) ] # place source on HICANN 0 source_hicann = self.chip(0) self.marocco.manual_placement.on_hicann(source, source_hicann) # place targets on all HICANNs on same reticle but random neurons nrns = self.shuffle(255) for ii, pop in enumerate(p): hicann = HICANNGlobal(X(int(source_hicann.x()) + ii % 4), Y(int(source_hicann.y()) + ii // 4)) self.marocco.manual_placement.on_hicann(pop, hicann) print(pop, hicann) connector = pynn.AllToAllConnector(allow_self_connections=True, weights=1.) store = [] # connect source to targets for trg in p: proj = pynn.Projection(source, trg, connector, target='excitatory') weights = copy.deepcopy(proj.getWeights()) store.append((proj, weights)) # start simulation pynn.run(10) # in ms pynn.end() # make sure we have no synapse loss self.assertEqual(0, self.marocco.stats.getSynapseLoss()) # assert weights are the same (at least as long as we don't send be # the transformed digital weights) for proj, weights in store: self.assertEqual(self.marocco.stats.getWeights(proj), weights)
def test_loop_modularity_nb(self): """tests to override the loop hook with NB handling""" class myPlacer(placer): def initialise(self): b = sorted( self.m_neuron_blocks.access, key=lambda nb: int(nb.toHICANNOnWafer().toEnum().value())) self.m_neuron_blocks.access = b def loop(self): print("removing the last NB") b = self.m_neuron_blocks.access # use this or the following b = self.m_neuron_blocks.value() b = sorted( b, key=lambda nb: int(nb.toHICANNOnWafer().toEnum().value())) c = [] for i in range(len(b) - 1): c.append(b[i]) # use access to set full vector self.m_neuron_blocks.access = c # or use the value() to access single elements for i in range(len(self.m_neuron_blocks.value())): del (self.m_neuron_blocks.value()[0]) for nb in c: self.m_neuron_blocks.value().append(nb) marocco = self.marocco user_strat = myPlacer() marocco.neuron_placement.default_placement_strategy(user_strat) pynn.setup(marocco=marocco) self.network() result = self.load_results() hicann = C.HICANNOnWafer(Enum(42)) nb = C.NeuronBlockOnHICANN(Enum(4)) for pop in self.pops: for nrn in pop: placement_item, = result.placement.find(nrn) logical_neuron = placement_item.logical_neuron() for denmem in logical_neuron: # all pops must be on different NBs self.assertFalse(nb == denmem.toNeuronBlockOnHICANN() and hicann == denmem.toHICANNOnWafer()) nb = denmem.toNeuronBlockOnHICANN() hicann = denmem.toHICANNOnWafer()
def test_external_sources_projections(self, params): nprojections = params[0] nsources = params[1] print((nprojections, nsources)) """ An external sources has multiple projections so it should be split if it wuld not be of size 1 so unfortunately the users would need to live with that. """ pylogging.set_loglevel(pylogging.get("marocco"), pylogging.LogLevel.TRACE) pylogging.set_loglevel(pylogging.get("Calibtic"), pylogging.LogLevel.ERROR) pynn.setup(marocco=self.marocco) self.marocco.neuron_placement.default_neuron_size(4) # ensure a limited synapse driver chain length. self.marocco.synapse_routing.driver_chain_length(3) # we expect synapse loss, but we dont care, as the source cant be split. # we want this tests not to throw exceptions. self.marocco.continue_despite_synapse_loss = True target = pynn.Population(1, pynn.IF_cond_exp, {}) hicann = C.HICANNOnWafer(Enum(100)) self.marocco.manual_placement.on_hicann(target, hicann) exsource = pynn.Population(nsources, pynn.SpikeSourcePoisson, {'rate': 1.}) for i in range(nprojections): proj = pynn.Projection(exsource, target, pynn.AllToAllConnector(weights=1.)) # access to proj so flake8 keeps silent proj.size pynn.run(0) pynn.end() results = self.load_results() synapses = results.synapse_routing.synapses() placement = results.placement for dnc in C.iter_all(C.DNCMergerOnWafer): PonDNC = placement.find(dnc) # PopulationOnDNC if PonDNC: ## if driver requirements exceeded, only one source should be ## placed on the DNC, but synapse loss is still expected if (nprojections > 4): # this number is just guessed self.assertTrue(len(PonDNC) <= 1) else: self.assertTrue(len(PonDNC) <= 12)
def main(): """ create small network with synapse loss. The synapse loss happens due to a maximum syndriver chain length of 5 and only 4 denmems per neuron. After mapping, the synapse loss per projection is evaluated and plotted for one projection. The sum of lost synapses per projection is compared to the overall synapse loss returnd by the mapping stats. """ marocco = PyMarocco() marocco.neuron_placement.default_neuron_size(4) marocco.synapse_routing.driver_chain_length(5) marocco.continue_despite_synapse_loss = True marocco.calib_backend = PyMarocco.CalibBackend.Default marocco.neuron_placement.skip_hicanns_without_neuron_blacklisting(False) pynn.setup(marocco=marocco) neuron = pynn.Population(50, pynn.IF_cond_exp) source = pynn.Population(50, pynn.SpikeSourcePoisson, {'rate' : 2}) connector = pynn.FixedProbabilityConnector( allow_self_connections=True, p_connect=0.5, weights=0.00425) proj_stim = pynn.Projection(source, neuron, connector, target="excitatory") proj_rec = pynn.Projection(neuron, neuron, connector, target="excitatory") pynn.run(1) print marocco.stats total_syns = 0 lost_syns = 0 for proj in [proj_stim, proj_rec]: l,t = projectionwise_synapse_loss(proj, marocco) total_syns += t lost_syns += l assert total_syns == marocco.stats.getSynapses() assert lost_syns == marocco.stats.getSynapseLoss() plot_projectionwise_synapse_loss(proj_stim, marocco) pynn.end()
dual=False) # Mapping config marocco = PyMarocco() marocco.backend = PyMarocco.ESS # choose Executable System Specification instead of real hardware marocco.calib_backend = PyMarocco.CalibBackend.Default marocco.defects.backend = Defects.Backend.None marocco.neuron_placement.skip_hicanns_without_neuron_blacklisting(False) marocco.hicann_configurator = pysthal.HICANNConfigurator() marocco.experiment_time_offset = 5.e-7 # can be low for ESS, as no repeater locking required marocco.neuron_placement.default_neuron_size(4) # default number of hardware neuron circuits per pyNN neuron marocco.persist = "nmpm1_adex_neuron_ess.bin" marocco.param_trafo.use_big_capacitors = False # set-up the simulator pynn.setup(marocco=marocco) neuron_count = 1 # size of the Population we will create # Set the neuron model class neuron_model = pynn.EIF_cond_exp_isfa_ista # an Adaptive Exponential I&F Neuron neuron_parameters = { 'a' : 4.0, # adaptation variable a in nS 'b' : 0.0805, # adaptation variable b in pA 'cm' : 0.281, # membrane capacitance nF 'delta_T' : 1.0, # delta_T fom Adex mod in mV, determines the sharpness of spike initiation 'e_rev_E' : 0.0, # excitatory reversal potential in mV 'e_rev_I' : -80.0, # inhibitory reversal potential in mV 'i_offset' : 0.0, # offset current 'tau_m' : 9.3667, # membrane time constant
'cm': 0.2, 'v_reset': -70., 'v_rest': -20., 'v_thresh': -10, 'e_rev_I': -100., 'e_rev_E': 60., 'tau_m': 20., 'tau_refrac': 0.1, 'tau_syn_E': 5., 'tau_syn_I': 5., } marocco = PyMarocco() marocco.default_wafer = C.Wafer(int(os.environ.get("WAFER", 33))) runtime = Runtime(marocco.default_wafer) pynn.setup(marocco=marocco, marocco_runtime=runtime) # ——— set up network —————————————————————————————————————————————————————————— pop = pynn.Population(1, pynn.IF_cond_exp, neuron_parameters) pop.record() pop.record_v() hicann = C.HICANNOnWafer(C.Enum(297)) marocco.manual_placement.on_hicann(pop, hicann) connector = pynn.AllToAllConnector(weights=1) duration = 1500.0
def run_mapping(calib_dir, output_dir, wafer, hicann, skip_neurons, params): """ :type hicann: HICANNOnWafer :param params: dictionary containing neuron parameters :param skip_neurons: number of non-functional dummy neurons to insert """ from pymarocco import PyMarocco from pymarocco.results import Marocco from pymarocco.coordinates import BioNeuron import pyhmf as pynn import pysthal logger = setup_logger() marocco = PyMarocco() marocco.neuron_placement.default_neuron_size( utils.get_nested(params, "neuron.size", default=4)) marocco.neuron_placement.restrict_rightmost_neuron_blocks(True) marocco.neuron_placement.minimize_number_of_sending_repeaters(False) marocco.backend = PyMarocco.None marocco.calib_backend = PyMarocco.XML marocco.calib_path = calib_dir marocco.param_trafo.use_big_capacitors = False marocco.persist = os.path.join(output_dir, "marocco.xml.gz") marocco.wafer_cfg = os.path.join(output_dir, "wafer_cfg.bin") marocco.default_wafer = wafer # FIXME: remove? marocco.param_trafo.alpha_v = 1000.0 marocco.param_trafo.shift_v = 0.0 pynn.setup(marocco=marocco) synaptic_input = {} for input_type, input_params in params["synaptic_input"].iteritems(): if not utils.get_nested(input_params, "enabled", default=True): logger.info( "skipping disabled {!r} synaptic input".format(input_type)) continue spike_times = utils.get_nested( input_params, "spike_times", default=None) if spike_times: start = spike_times["start"] stop = spike_times["stop"] step = spike_times["step"] spike_times = np.arange(start, stop, step) input_pop_model = pynn.SpikeSourceArray input_pop_params = {"spike_times": spike_times} else: raise NotImplementedError( "unknown config for {!r} synaptic input".format(input_type)) logger.info( ("{!r} synaptic input will come from " "{} with parameters {!r}").format( input_type, input_pop_model.__name__, input_pop_params)) synaptic_input[input_type] = pynn.Population( 1, input_pop_model, input_pop_params) neuron_params = utils.get_nested(params, "neuron.parameters") neuron_model = getattr(pynn, utils.get_nested( params, "neuron.model", default="IF_cond_exp")) logger.info( "target population is {} neuron with parameters {!r}".format( neuron_model.__name__, neuron_params)) # Force marocco to give us a different neuron by inserting # `Neuron_Number - 1` dummy neurons. populations = [] for ii in range(0, skip_neurons + 1): populations.append(pynn.Population( 1, neuron_model, neuron_params)) marocco.manual_placement.on_hicann(populations[-1], hicann) target_pop = populations[-1] for input_type, input_pop in synaptic_input.iteritems(): multiplicity = utils.get_nested( params, "synaptic_input", input_type, "multiplicity", default=1) assert multiplicity >= 1 weight = utils.get_nested( params, "synaptic_input", input_type, "weight") con = pynn.AllToAllConnector(weights=weight) logger.info( ("connecting {!r} synaptic input " "to target population with weight {} " "via {} projections").format( input_type, weight, multiplicity)) for _ in xrange(multiplicity): pynn.Projection(input_pop, target_pop, con, target=input_type) pynn.run(params["duration"]) pynn.end() wafer_cfg = pysthal.Wafer() wafer_cfg.load(marocco.wafer_cfg) results = Marocco.from_file(marocco.persist) return (BioNeuron(target_pop[0]), results, wafer_cfg)