Exemple #1
0
def test_find_the_min_F():
    obstacle_2D_array = Model.create_obstacle_array(scenario_2d["data"])
    model_2D = Model(scenario_2d["dimension"], obstacle_2D_array,
                     scenario_2d["waypoint"])
    Q_2D = model_2D.create_initial_Q()

    min_node_2D = Tools.find_the_minimum(Q_2D, 'f')
    assert min_node_2D["key"] == '12,0'
    assert int(min_node_2D["value"].dist) == 0

    obstacle_3D_array = Model.create_obstacle_array(scenario["data"])
    model_3D = Model(scenario["dimension"], obstacle_3D_array,
                     scenario["waypoint"])
    is_fast = True
    fast_Q_3D = model_3D.create_initial_Q(is_fast)

    min_node_3D = Tools.find_the_minimum(fast_Q_3D, 'f')
    assert min_node_3D["key"] == '5,9,2'
    assert int(min_node_3D["value"].dist) == 0

    is_fast = False
    original_Q_3D = model_3D.create_initial_Q(is_fast)

    original_min_node_3D = Tools.find_the_minimum(original_Q_3D, 'f')
    assert original_min_node_3D["key"] == '5,9,2'
    assert int(original_min_node_3D["value"].dist) == 0
Exemple #2
0
def test_is_collinear():
    startPoint2D = {"x": 5, "y": 2}
    nextPoint2D = {"x": 5, "y": 4}
    futurePoint2D = {"x": 5, "y": 10}
    assert Tools.is_collinear(startPoint2D, nextPoint2D, futurePoint2D) == True

    testPoint2D1 = {"x": 8, "y": 10}
    assert Tools.is_collinear(startPoint2D, nextPoint2D, testPoint2D1) == False

    startPoint3D = {"x": 2, "y": 2, "z": 3}
    nextPoint3D = {"x": 2, "y": 2, "z": 6}
    futurePoint3D = {"x": 2, "y": 2, "z": 8}
    assert Tools.is_collinear(startPoint3D, nextPoint3D, futurePoint3D) == True

    testPoint3D1 = {"x": 2, "y": 4, "z": 10}
    assert Tools.is_collinear(startPoint3D, nextPoint3D, testPoint3D1) == False
Exemple #3
0
def test_create_path_from_finalQ():
    start_node = Node(12, 0)
    stop_node = Node(1, 11)
    dict_2D = dict()

    no_result_2D = Tools.create_path_from_final_Q(dict_2D, start_node)
    assert int(no_result_2D["x"][0]) == int(start_node.x)
    assert int(no_result_2D["y"][0]) == int(start_node.y)
    assert len(no_result_2D["z"]) == int(0)

    last_node = Node(6, 6)
    start_node.prev = last_node
    dict_2D[str(last_node)] = last_node
    partial_result_2D = Tools.create_path_from_final_Q(dict_2D, last_node)
    assert int(partial_result_2D["x"][0]) == int(last_node.x)
    assert int(partial_result_2D["y"][0]) == int(last_node.y)

    last_node.prev = stop_node
    great_result_2D = Tools.create_path_from_final_Q(dict_2D, stop_node)
    assert int(great_result_2D["x"][0]) == int(stop_node.x)
    assert int(great_result_2D["y"][0]) == int(stop_node.y)
Exemple #4
0
def test_intersect():
    assert Tools.intersect(Node(1, 1), Node(1, 2.5)) == True

    group_center_2D = Node(2.999, 5)
    obstacle_2D = Node(5, 5)
    critical_distance_2D = 1.5
    assert Tools.intersect(group_center_2D, obstacle_2D, critical_distance_2D,
                           True) == False

    intersected_group_center_2D = Node(3, 5)
    assert Tools.intersect(intersected_group_center_2D, obstacle_2D,
                           critical_distance_2D, True) == True

    group_center_3D = Node(2.999, 5, 4)
    obstacle_3D = Node(5, 5, 5)
    critical_distance_3D = 1.582
    assert Tools.intersect(group_center_3D, obstacle_3D, critical_distance_3D,
                           False) == False

    intersected_group_center_3D = Node(3, 5, 4)
    assert Tools.intersect(intersected_group_center_3D, obstacle_3D,
                           critical_distance_3D, False) == True
Exemple #5
0
    def __init__(self, scenario, options=None):
        self.dimension = scenario["dimension"]
        self.is_2d = Model.is_two_dimensional(self.dimension)

        if "data" in scenario:
            self.obstacle_array = Model.create_obstacle_array(scenario["data"])
        else:
            self.obstacle_array = []
        self.num_obstacles = len(self.obstacle_array)

        self.waypoint = scenario["waypoint"]
        start = self.waypoint["start"]
        self.start_node = Node(start["x"], start["y"]) if self.is_2d else Node(
            start["x"], start["y"], start["z"])
        self.start_node.set_as_start_node()
        stop = self.waypoint["stop"]
        self.stop_node = Node(stop["x"], stop["y"]) if self.is_2d else Node(
            stop["x"], stop["y"], stop["z"])
        self.last_node_key = str(self.stop_node)
        self.allow_diagonal = bool(
            self.waypoint["allowDiagonal"]
        ) if "allowDiagonal" in self.waypoint else False

        if options is None:
            self.debug_mode = False
            self.is_fast = True
        else:
            self.debug_mode = True if 'debug_mode' in options and options[
                'debug_mode'] is True else False
            self.is_fast = False if 'type' in options and options[
                'type'] == 'original' else True

        if self.debug_mode:
            print("A* Path Finding (2D)") if self.is_2d else print(
                "A* Path Finding (3D)")

        model = Model(self.dimension, self.obstacle_array, self.waypoint,
                      self.debug_mode)
        self.Q = model.create_initial_Q(self.is_fast)

        self.open_set = dict()
        self.open_set[str(self.start_node)] = self.Q.get(str(self.start_node))

        self.message = "[Done] no results."
        if Model.nodes_on_obstacles(self.obstacle_array,
                                    [self.start_node, self.stop_node]):
            message = "[Waypoint Error] start position or stop position is on the obstacle."
            print(message)
            self.message = message

        self.boundary = scenario["boundary"] if "boundary" in scenario else None
        if not self.is_2d:
            self.z_ceil = int(self.boundary["zCeil"]) if (
                self.boundary and "zCeil" in self.boundary) else inf
            self.z_floor = int(self.boundary["zFloor"]) if (
                self.boundary and "zFloor" in self.boundary) else -inf
            # print("z_ceil: {}, z_floor: {}".format(self.z_ceil, self.z_floor))

            if not Model.is_boundary_available(self.z_floor, self.start_node.z,
                                               self.z_ceil):
                message = "[Boundary Error] start position is out of boundary."
                print(message)
                self.message = message

        grouping = scenario["grouping"] if "grouping" in scenario else None
        # Only for integer type
        # self.is_grouping = True if grouping is not None and "radius" in grouping and str(grouping["radius"]).isnumeric() else False
        # For integer and float type
        self.is_grouping = True if grouping is not None and "radius" in grouping and Tools.is_number(
            str(grouping["radius"])) else False
        self.group_radius = float(
            grouping["radius"]) if self.is_grouping else 0
        self.is_group_flat = True if self.is_2d or "boundary" in scenario else False

        self.num_obstacles_in_start_group = 0
        self.num_obstacles_in_stop_group = 0
        if self.is_grouping:
            grouping_style = 'circle' if self.is_group_flat else 'sphere'
            print('[Grouping] radius', (self.group_radius + 0.6), 'of',
                  grouping_style)

            for obstacle in self.obstacle_array:
                if Tools.intersect(self.start_node, obstacle,
                                   self.group_radius, self.is_group_flat):
                    # message = f'[Grouping Error] obstacle is in the start {grouping_style}'
                    # print(message)
                    self.num_obstacles_in_start_group = self.num_obstacles_in_start_group + 1
                if Tools.intersect(self.stop_node, obstacle, self.group_radius,
                                   self.is_group_flat):
                    # message = f'[Grouping Error] obstacle is in the stop {grouping_style}'
                    # print(message)
                    self.num_obstacles_in_stop_group = self.num_obstacles_in_stop_group + 1

            if self.num_obstacles_in_start_group > 0:
                print(f'[Grouping Error] {self.num_obstacles_in_start_group} obstacle is in the start {grouping_style}') if self.num_obstacles_in_start_group == 1 \
                else print(f'[Grouping Error] {self.num_obstacles_in_start_group} obstacles are in the start {grouping_style}')
            if self.num_obstacles_in_stop_group > 0:
                print(f'[Grouping Error] {self.num_obstacles_in_stop_group} obstacle is in the stop {grouping_style}') if self.num_obstacles_in_stop_group == 1 \
                else print(f'[Grouping Error] {self.num_obstacles_in_stop_group} obstacles are in the stop {grouping_style}')
Exemple #6
0
    def calculate_path(self):
        final_Q = dict()
        visited_Q = dict()

        calculate_start_time = time.time()

        if self.num_obstacles_in_stop_group > 0:
            calculate_end_time = time.time()
            elapsed_ms = 1000.0 * (calculate_end_time - calculate_start_time)
            path = {
                "x": [int(self.start_node.x)],
                "y": [int(self.start_node.y)],
                "z": [] if self.is_2d else [int(self.start_node.z)]
            }
            refined_path = Tools.refine_path_from_collinearity(path)
            self.message = "[Path Error] no results due to obstacles in STOP area."

            return {
                "visited_Q": visited_Q,
                "final_Q": final_Q,
                "elapsed_ms": elapsed_ms,
                "path": path,
                "refined_path": refined_path,
                "message": self.message
            }

        size = len(self.open_set)
        while size > 0:
            obj = Tools.find_the_minimum(self.open_set, 'f')
            obj_key = obj["key"]
            current_node = obj["value"]
            final_Q[obj_key] = current_node
            if obj_key is not None:
                self.last_node_key = str(obj_key)
            del self.open_set[obj_key]

            if current_node == self.stop_node:
                message = "[Done] Arrival! 🚀"
                print(message)
                self.message = message
                break

            shift_node = [-1, 0, 1]
            for shift_row in shift_node:
                for shift_col in shift_node:
                    if self.is_2d:
                        is_not_diagonal = (shift_row == 0 or shift_col
                                           == 0) and (shift_row != shift_col)
                        is_diagonal = not (shift_row == 0 and shift_col == 0)

                        is_allowed = is_diagonal if self.allow_diagonal else is_not_diagonal
                        if is_allowed:
                            neighbor_node = current_node.shift(
                                shift_row, shift_col)
                            if neighbor_node.is_out_of_bound(
                                    bound_x=[-1, self.dimension['x']],
                                    bound_y=[-1, self.dimension['y']]):
                                continue

                            if self.is_grouping:
                                is_obstacle_found = False
                                for obstacle_node in self.obstacle_array:
                                    if Tools.intersect(neighbor_node,
                                                       obstacle_node,
                                                       self.group_radius,
                                                       self.is_group_flat):
                                        is_obstacle_found = True
                                        # no more to check the other collisions
                                        break
                                if is_obstacle_found:
                                    # continue to find the next neighbor
                                    continue
                            else:
                                is_obstacle_found = False
                                for index in range(self.num_obstacles):
                                    obstacle_node = self.obstacle_array[index]
                                    if obstacle_node == neighbor_node:
                                        # Find out an obstacle on the neighbor node
                                        is_obstacle_found = True
                                        break
                                if is_obstacle_found:
                                    continue

                            if str(neighbor_node) in final_Q:
                                continue

                            if self.is_fast is True:
                                neighbor = visited_Q.get(str(neighbor_node))
                                if neighbor is None:
                                    neighbor = Node(neighbor_node.x,
                                                    neighbor_node.y)
                                visited_Q[str(neighbor_node)] = neighbor

                                if str(neighbor_node) not in self.open_set:
                                    self.open_set[str(
                                        neighbor_node)] = neighbor

                                dist = sqrt(shift_row**2 + shift_col**2)
                                alt = current_node.dist + dist
                                if alt < neighbor.dist:
                                    neighbor.dist = alt
                                    neighbor.f = alt + neighbor.manhattan_distance_to(
                                        self.stop_node)
                                    neighbor.prev = str(current_node)
                                    self.open_set[str(
                                        neighbor_node)] = neighbor
                            else:
                                neighbor = self.Q.get(str(neighbor_node))
                                if neighbor is not None and str(
                                        neighbor_node) not in final_Q:
                                    visited_Q[str(neighbor_node)] = neighbor

                                    if str(neighbor_node) not in self.open_set:
                                        self.open_set[str(
                                            neighbor_node)] = neighbor

                                    dist = sqrt(shift_row**2 + shift_col**2)
                                    alt = current_node.dist + dist
                                    if alt < neighbor.dist:
                                        neighbor.dist = alt
                                        neighbor.f = alt + neighbor.manhattan_distance_to(
                                            self.stop_node)
                                        neighbor.prev = str(current_node)
                                        self.open_set[str(
                                            neighbor_node)] = neighbor
                    else:
                        for shift_z in shift_node:
                            is_not_diagonal = ((shift_row == 0 or shift_col == 0) and (shift_row != shift_col)) \
                                or (shift_row == 0 and shift_col == 0)
                            is_diagonal = not (shift_row == 0 and shift_col
                                               == 0 and shift_z == 0)

                            is_allowed = is_diagonal if self.allow_diagonal else is_not_diagonal
                            if is_allowed:
                                neighbor_node = current_node.shift(
                                    shift_row, shift_col, shift_z)

                                if neighbor_node.is_out_of_bound(
                                        bound_z=[self.z_floor, self.z_ceil]):
                                    continue

                                # Full search (time-consuming) = 2D
                                # neighbor = self.Q.get(str(neighbor_node))
                                # if neighbor is not None and str(neighbor_node) not in final_Q:
                                #     visited_Q[str(neighbor_node)] = neighbor
                                #
                                #     dist = sqrt(shift_row ** 2 + shift_col ** 2 + shift_z ** 2)
                                #     alt = current_obj["dist"] + dist
                                #     # ...

                                # Fast search
                                if self.is_grouping:
                                    is_obstacle_found = False
                                    for obstacle_node in self.obstacle_array:
                                        if Tools.intersect(
                                                neighbor_node, obstacle_node,
                                                self.group_radius,
                                                self.is_group_flat):
                                            is_obstacle_found = True
                                            # no more to check the other collisions
                                            break
                                    if is_obstacle_found:
                                        # continue to find the next neighbor
                                        continue
                                else:
                                    is_obstacle_found = False
                                    for index in range(self.num_obstacles):
                                        obstacle_node = self.obstacle_array[
                                            index]
                                        if obstacle_node == neighbor_node:
                                            # Find out an obstacle on the neighbor node
                                            is_obstacle_found = True
                                            break
                                    if is_obstacle_found:
                                        continue

                                # has_key was removed in Python 3
                                # https://docs.python.org/3.0/whatsnew/3.0.html#builtins
                                # print(final_Q.has_key(neighborPosition))
                                if str(neighbor_node) in final_Q:
                                    continue

                                neighbor = visited_Q.get(str(neighbor_node))
                                if neighbor is None:
                                    neighbor = Node(neighbor_node.x,
                                                    neighbor_node.y,
                                                    neighbor_node.z)
                                    visited_Q[str(neighbor_node)] = neighbor

                                if str(neighbor_node) not in self.open_set:
                                    self.open_set[str(
                                        neighbor_node)] = neighbor

                                dist = sqrt(shift_row**2 + shift_col**2 +
                                            shift_z**2)
                                alt = current_node.dist + dist
                                if alt < neighbor.dist:
                                    neighbor.dist = alt
                                    neighbor.f = alt + neighbor.manhattan_distance_to(
                                        self.stop_node)
                                    neighbor.prev = str(current_node)
                                    self.open_set[str(
                                        neighbor_node)] = neighbor

            size = len(self.open_set)

        calculate_end_time = time.time()
        elapsed_ms = 1000.0 * (calculate_end_time - calculate_start_time)

        final_node = final_Q.get(str(self.last_node_key))
        path = Tools.create_path_from_final_Q(final_Q, final_node)
        refined_path = Tools.refine_path_from_collinearity(path)
        if self.num_obstacles_in_start_group > 0 and len(path["x"]) == 1:
            self.message = "[Path Error] no results due to obstacles in START area."

        return {
            "visited_Q": visited_Q,
            "final_Q": final_Q,
            "elapsed_ms": elapsed_ms,
            "path": path,
            "refined_path": refined_path,
            "message": self.message
        }
Exemple #7
0
    def calculate_path(self):
        # print("A* Path Finding (2D)") if self.is_2d else print("A* Path Finding (3D)")
        final_Q = dict()
        visited_Q = dict()

        calculate_start_time = time.time()

        size = len(self.open_set)
        while size > 0:
            obj = Tools.find_the_minimum(self.open_set, 'dist')
            obj_key = obj["key"]
            current_node = obj["value"]
            final_Q[obj_key] = current_node
            if obj_key is not None:
                self.last_node_key = str(obj_key)
            del self.open_set[obj_key]

            if current_node == self.stop_node:
                message = "[Done] Arrival! 🚀"
                print(message)
                self.message = message
                break

            shift_node = [-1, 0, 1]
            for shift_row in shift_node:
                for shift_col in shift_node:
                    if self.is_2d:
                        is_not_diagonal = (shift_row == 0 or shift_col == 0) and (shift_row != shift_col)
                        is_diagonal = not (shift_row == 0 and shift_col == 0)

                        is_allowed = is_diagonal if self.allow_diagonal else is_not_diagonal
                        if is_allowed:
                            neighbor_node = current_node.shift(shift_row, shift_col)
                            neighbor = self.Q.get(str(neighbor_node))

                            if neighbor is not None and str(neighbor_node) not in final_Q:
                                visited_Q[str(neighbor_node)] = neighbor

                                if str(neighbor_node) not in self.open_set:
                                    self.open_set[str(neighbor_node)] = neighbor

                                dist = sqrt(shift_row ** 2 + shift_col ** 2)
                                alt = current_node.dist + dist
                                if alt < neighbor.dist:
                                    neighbor.dist = alt
                                    neighbor.prev = str(current_node)
                                    self.open_set[str(neighbor_node)] = neighbor
                    else:
                        for shift_z in shift_node:
                            is_not_diagonal = ((shift_row == 0 or shift_col == 0) and (shift_row != shift_col)) \
                                or (shift_row == 0 and shift_col == 0)
                            is_diagonal = not (shift_row == 0 and shift_col == 0 and shift_z == 0)

                            is_allowed = is_diagonal if self.allow_diagonal else is_not_diagonal
                            if is_allowed:
                                neighbor_node = current_node.shift(shift_row, shift_col, shift_z)

                                if neighbor_node.is_out_of_bound(bound_z = [self.z_floor, self.z_ceil]):
                                    continue

                                # Full search (time-consuming) = 2D
                                # neighbor = self.Q.get(str(neighbor_node))
                                # if neighbor is not None and str(neighbor_node) not in final_Q:
                                #     visited_Q[str(neighbor_node)] = neighbor
                                #
                                #     dist = sqrt(shift_row ** 2 + shift_col ** 2 + shift_z ** 2)
                                #     alt = current_obj["dist"] + dist
                                #     # ...

                                # Fast search
                                is_obstacle_found = False
                                for index in range(self.num_obstacles):
                                    obstacle_node = self.obstacle_array[index]
                                    if obstacle_node == neighbor_node:
                                        # Find out an obstacle on the neighbor node
                                        is_obstacle_found = True
                                        break
                                if is_obstacle_found:
                                    continue

                                # has_key was removed in Python 3
                                # https://docs.python.org/3.0/whatsnew/3.0.html#builtins
                                # print(final_Q.has_key(neighborPosition))
                                if str(neighbor_node) in final_Q:
                                    continue

                                neighbor = visited_Q.get(str(neighbor_node))
                                if neighbor is None:
                                    neighbor = Node(neighbor_node.x, neighbor_node.y, neighbor_node.z)
                                    visited_Q[str(neighbor_node)] = neighbor

                                if str(neighbor_node) not in self.open_set:
                                    self.open_set[str(neighbor_node)] = neighbor

                                dist = sqrt(shift_row ** 2 + shift_col ** 2 + shift_z ** 2)
                                alt = current_node.dist + dist
                                if alt < neighbor.dist:
                                    neighbor.dist = alt
                                    neighbor.prev = str(current_node)
                                    self.open_set[str(neighbor_node)] = neighbor

            size = len(self.open_set)

        calculate_end_time = time.time()
        elapsed_ms = 1000.0 * (calculate_end_time - calculate_start_time)
        final_node = final_Q.get(str(self.last_node_key))
        path = Tools.create_path_from_final_Q(final_Q, final_node)
        
        return {
            "visited_Q": visited_Q,
            "final_Q": final_Q,
            "elapsed_ms": elapsed_ms,
            "path": path,
            "message": self.message
        }
Exemple #8
0
def test_refine_path_from_collinearity():
    zero_lengths_path = Tools.refine_path_from_collinearity({"x": [], "y": []})
    assert zero_lengths_path is None
    zero_z_length_path = Tools.refine_path_from_collinearity({
        "x": [1, 2, 3],
        "y": [1, 1, 1],
        "z": []
    })
    assert len(zero_z_length_path["x"]) == 2
    inconsistent_length_path_2d = Tools.refine_path_from_collinearity({
        "x": [1, 2, 3],
        "y": [1, 1, 1, 1]
    })
    assert inconsistent_length_path_2d is None
    inconsistent_length_path_3d = Tools.refine_path_from_collinearity({
        "x": [1, 2, 3],
        "y": [1, 1, 1],
        "z": [2]
    })
    assert inconsistent_length_path_3d is None

    short_lengths_path_2d_1 = Tools.refine_path_from_collinearity({
        "x": [1],
        "y": [2]
    })
    assert len(short_lengths_path_2d_1["x"]) == 1
    short_lengths_path_2d_2 = Tools.refine_path_from_collinearity({
        "x": [1, 1],
        "y": [2, 2]
    })
    assert len(short_lengths_path_2d_2["x"]) == 2
    short_lengths_path_3d_1 = Tools.refine_path_from_collinearity({
        "x": [1],
        "y": [2],
        "z": [3]
    })
    assert len(short_lengths_path_3d_1["x"]) == 1
    short_lengths_path_3d_2 = Tools.refine_path_from_collinearity({
        "x": [1, 1],
        "y": [2, 2],
        "z": [3, 3]
    })
    assert len(short_lengths_path_3d_2["x"]) == 2

    non_diagonal_path_2d_last_three_collinear = {
        "x": [12, 12, 11, 11, 11, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1],
        "y": [0, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5]
    }  #       o   o   o           o                              o  o
    refined_non_diagonal_path_2d_last_three_collinear = Tools.refine_path_from_collinearity(
        non_diagonal_path_2d_last_three_collinear, True)
    # print(refined_non_diagonal_path_2d_last_three_collinear)
    assert len(refined_non_diagonal_path_2d_last_three_collinear["x"]) == 6
    assert len(refined_non_diagonal_path_2d_last_three_collinear["y"]) == 6

    non_diagonal_path_2d = {
        "x": [
            12, 12, 11, 11, 11, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1,
            1, 1, 1
        ],
        "y": [
            0, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 8, 9, 10,
            11
        ]
    }  #       o   o   o           o                              o                      o
    refined_non_diagonal_path_2d = Tools.refine_path_from_collinearity(
        non_diagonal_path_2d, True)
    # print(refined_non_diagonal_path_2d)
    assert len(refined_non_diagonal_path_2d["x"]) == 6
    assert len(refined_non_diagonal_path_2d["y"]) == 6

    non_diagonal_path = {
        "x": [5, 5, 5, 4, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5],
        "y": [9, 8, 7, 7, 7, 6, 5, 4, 3, 2, 2, 1, 1, 0],
        "z": [2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4]
    }  #      o     o     o     o     o  o  o  o  o  o
    refined_non_diagonal_path = Tools.refine_path_from_collinearity(
        non_diagonal_path, True)
    # print(refined_non_diagonal_path)
    assert len(non_diagonal_path["x"]) == 14
    assert len(refined_non_diagonal_path["x"]) == 10
    assert len(refined_non_diagonal_path["y"]) == 10
    assert len(refined_non_diagonal_path["z"]) == 10

    diagonal_path = {
        "x": [5, 5, 4, 3, 3, 3, 4, 4, 5, 5, 5],
        "y": [9, 8, 7, 6, 5, 4, 3, 2, 3, 2, 1],
        "z": [2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4]
    }  #      o  o     o     o  o  o  o     o
    refined_diagonal_path = Tools.refine_path_from_collinearity(
        diagonal_path, True)
    # print(refined_diagonal_path)
    assert len(diagonal_path["x"]) == 11
    assert len(refined_diagonal_path["x"]) == 8
    assert len(refined_diagonal_path["y"]) == 8
    assert len(refined_diagonal_path["z"]) == 8

    path_with_zero_z = {
        "x": [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5],
        "y": [9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0],
        "z": [2, 1, 0, -1, -1, -1, -2, -2, -2, -1, 0, 1, 2, 3, 4]
    }  #      o  o      o       o   o       o      o           o
    refined_path_with_zero_z = Tools.refine_path_from_collinearity(
        path_with_zero_z)
    assert len(path_with_zero_z["x"]) == 15
    assert len(refined_path_with_zero_z["x"]) == 8
    assert len(refined_path_with_zero_z["y"]) == 8
    assert len(refined_path_with_zero_z["z"]) == 8