def load_and_get_fdata_params(self, sessions_data, mask): params = stack_trees([sd.to_dict() for sd in sessions_data]) fns = params.pop('func_data_file') pyhrf.verbose(1, 'Load functional data from: %s' %',\n'.join(fns)) fdata = stack_cuboids([xndarray.load(fn) for fn in fns], 'session') fdata = np.concatenate(fdata.data) #scan sessions along time axis pio.discard_bad_data(fdata, mask) pyhrf.verbose(1, 'Functional data shape %s' %str(fdata.shape)) params['func_data'] = fdata return params
def load_and_get_fdata_params(self, mask): if op.splitext(self.paradigm_file)[-1] == '.csv': onsets, durations = pio.load_paradigm_from_csv(self.paradigm_file) else: raise Exception('Only CSV file format support for paradigm') fns = self.func_data_files pyhrf.verbose(1, 'Load functional data from: %s' %',\n'.join(fns)) fdata = stack_cuboids([xndarray.load(fn) for fn in fns], 'session') fdata = np.concatenate(fdata.data) #scan sessions along time axis pio.discard_bad_data(fdata, mask) pyhrf.verbose(1, 'Functional data shape %s' %str(fdata.shape)) return {'stim_onsets': onsets, 'stim_durations':durations, 'func_data': fdata}
def load_surf_bold_mask(bold_files, mesh_file, mask_file=None): pyhrf.verbose(1, 'Load mesh: ' + mesh_file) coords,triangles,coord_sys = read_mesh(mesh_file) pyhrf.verbose(2, 'Build graph ... ') fgraph = graph_from_mesh(triangles) assert graph_is_sane(fgraph) pyhrf.verbose(1, 'Mesh has %d nodes' %len(fgraph)) pyhrf.verbose(2, 'Compute length of edges ... ') edges_l = np.array([np.array([distance(coords[i], coords[n], coord_sys.xform) \ for n in nl]) \ for i,nl in enumerate(fgraph)],dtype=object) if mask_file is None or not op.exists(mask_file): pyhrf.verbose(1,'Mask file %s does not exist. Taking '\ ' all nodes ...' %mask_file) mask = np.ones(len(fgraph)) mask_meta_obj = None mask_loaded_from_file = False else: mask, mask_meta_obj = read_texture(mask_file) mask_loaded_from_file = True if not (np.round(mask) == mask).all(): raise Exception("Mask is not n-ary") if len(mask) != len(fgraph): raise Exception('Size of mask (%d) is different from size '\ 'of graph (%d)' %(len(mask),len(fgraph))) mask = mask.astype(np.int32) if mask.min() == -1: mask += 1 #Split graph into rois: graphs = {} edge_lengths = {} for roiId in np.unique(mask): mroi = np.where(mask==roiId) g, nm = sub_graph(fgraph, mroi[0]) edge_lengths[roiId] = edges_l[mroi] graphs[roiId] = g #Load BOLD: lastScan = 0 sessionScans = [] bolds = [] for boldFile in bold_files: pyhrf.verbose(1, 'load bold: ' + boldFile) b,_ = read_texture(boldFile) pyhrf.verbose(1, 'bold shape: ' + str(b.shape)) bolds.append(b) sessionScans.append(np.arange(lastScan, lastScan+b.shape[0], dtype=int)) lastScan += b.shape[0] bold = np.concatenate(tuple(bolds)) if len(fgraph) != bold.shape[1]: raise Exception('Nb positions not consistent between BOLD (%d) '\ 'and mesh (%d)' %(bold.shape[1],len(fgraph))) # discard bad data (bold with var=0 and nan values): discard_bad_data(bold, mask, time_axis=0) return mask, mask_meta_obj, mask_loaded_from_file, bold, sessionScans, \ graphs, edge_lengths
def load_vol_bold_and_mask(bold_files, mask_file): # Handle mask if not op.exists(mask_file): pyhrf.verbose(1,'Mask file %s does not exist. Mask is '\ ' computed from BOLD ...' %mask_file) bf = 'subj0_bold_session0.nii.gz' # HACK if bold_files[0] == pyhrf.get_data_file_name(bf): max_frac = .99999 #be sure to keep non zero voxels cc = 0 # default BOLD vol has 2 ROIs else: max_frac = .9 cc = 1 compute_mask_files(bold_files[0], mask_file, False, .4, max_frac, cc=cc) mask_loaded_from_file = False else: mask_loaded_from_file = True pyhrf.verbose(1,'Assuming orientation for mask file: ' + \ string.join(MRI3Daxes, ',')) pyhrf.verbose(2,'Read mask from: %s' %mask_file) mask, mask_meta_obj = read_volume(mask_file) if not np.allclose(np.round(mask),mask): raise Exception("Mask is not n-ary (%s)" %mask_file) mask = mask.astype(np.int32) pyhrf.verbose(1,'Mask has shape %s' %str(mask.shape)) pyhrf.verbose(1,'Mask min value: %d' %mask.min()) pyhrf.verbose(1,'Mask max value: %d' %mask.max()) mshape = mask.shape if mask.min() == -1: mask += 1 #Load BOLD: lastScan = 0 sessionScans = [] bolds = [] pyhrf.verbose(1,'Assuming orientation for BOLD files: ' + \ string.join(MRI4Daxes, ',')) #print 'type of bold_files[0]:', type(bold_files[0]) #print 'bold_files:', bold_files if type(bold_files[0]) is list: bold_files = bold_files[0] for bold_file in bold_files: if not op.exists(bold_file): raise Exception('File not found: ' + bold_file) b, bold_meta = read_volume(bold_file) bolds.append(b) sessionScans.append(np.arange(lastScan, lastScan+b.shape[TIME_AXIS], dtype=int)) lastScan += b.shape[TIME_AXIS] bold = np.concatenate(tuple(bolds), axis=TIME_AXIS) pyhrf.verbose(1,'BOLD has shape %s' %str(bold.shape)) discard_bad_data(bold, mask) # #HACK # if mask_file != DEFAULT_MASK_VOL_FILE: # write_volume(mask,'./treated_mask.nii') # sys.exit(0) return mask, mask_meta_obj, mask_loaded_from_file, bold, sessionScans