def test_expectA(self): M = 51 K = 2 J = 25 N = 325 D = 3 TR = 1. Thrf = 25. dt = .5 data = self.data_simu Y = data.bold Onsets = data.get_joined_onsets() durations = data.paradigm.stimDurations Gamma = np.identity(N) X = OrderedDict([]) for condition, Ons in Onsets.iteritems(): X[condition] = vt.compute_mat_X_2(N, TR, D, dt, Ons) P = vt.PolyMat(N, 4, TR) L = vt.polyFit(Y, TR, 4, P) PL = np.dot(P, L) y_tilde = Y - np.dot(P, L) TT, m_h = getCanoHRF(Thrf, dt) m_h = m_h[:D] sigma_epsilone = np.ones(J) m_H = np.array(m_h) Sigma_H = np.ones((D, D), dtype=float) m_A = np.zeros((J, M), dtype=np.float64) Sigma_A = np.ones((M, M, J), np.float64) for j in xrange(0, J): Sigma_A[:, :, j] = 0.01*np.identity(M) mu_M = np.zeros((M, K), dtype=np.float64) sigma_M = np.ones((M, K), dtype=np.float64) q_Z = 0.5 * np.ones((M, K, J), dtype=np.float64) zerosJMD = np.zeros((J, M, D), dtype=np.float64) _, occurence_matrix, _ = vt.create_conditions(Onsets, durations, M, N, D, TR, dt) m_A, Sigma_A = vt.nrls_expectation(m_H, m_A, occurence_matrix, Gamma, q_Z, mu_M, sigma_M, M, y_tilde, Sigma_A, Sigma_H, sigma_epsilone)
def jde_vem_bold(graph, bold_data, onsets, durations, hrf_duration, nb_classes, tr, beta, dt, estimate_sigma_h=True, sigma_h=0.05, it_max=-1, it_min=0, estimate_beta=True, contrasts=None, compute_contrasts=False, hrf_hyperprior=0, estimate_hrf=True, constrained=False, zero_constraint=True, drifts_type="poly", seed=6537546): """This is the main function that computes the VEM analysis on BOLD data. This function uses optimized python functions. Parameters ---------- graph : ndarray of lists represents the neighbours indexes of each voxels index bold_data : ndarray, shape (nb_scans, nb_voxels) raw data onsets : dict dictionnary of onsets durations : # TODO # TODO hrf_duration : float hrf total time duration (in s) nb_classes : int the number of classes to classify the nrls. This parameter is provided for development purposes as most of the algorithm implies two classes tr : float time of repetition beta : float the initial value of beta dt : float hrf temporal precision estimate_sigma_h : bool, optional toggle estimation of sigma H sigma_h : float, optional initial or fixed value of sigma H it_max : int, optional maximal computed iteration number it_min : int, optional minimal computed iteration number estimate_beta : bool, optional toggle the estimation of beta contrasts : OrderedDict, optional dict of contrasts to compute compute_contrasts : bool, optional if True, compute the contrasts defined in contrasts hrf_hyperprior : float # TODO estimate_hrf : bool, optional if True, estimate the HRF for each parcel, if False use the canonical HRF constrained : bool, optional if True, add a constrains the l2 norm of the HRF to 1 drifts_type : str, optional set the drifts basis type used. Can be "poly" for polynomial or "cos" for cosine seed : int, optional seed used by numpy to initialize random generator number Returns ------- loop : int number of iterations before convergence nrls_mean : ndarray, shape (nb_voxels, nb_conditions) Neural response level mean value hrf_mean : ndarray, shape (hrf_len,) Hemodynamic response function mean value hrf_covar : ndarray, shape (hrf_len, hrf_len) Covariance matrix of the HRF labels_proba : ndarray, shape (nb_conditions, nb_classes, nb_voxels) probability of voxels being in one class noise_var : ndarray, shape (nb_voxels,) estimated noise variance nrls_class_mean : ndarray, shape (nb_conditions, nb_classes) estimated mean value of the gaussians of the classes nrls_class_var : ndarray, shape (nb_conditions, nb_classes) estimated variance of the gaussians of the classes beta : ndarray, shape (nb_conditions,) estimated beta drift_coeffs : ndarray, shape (# TODO) estimated coefficient of the drifts drift : ndarray, shape (# TODO) estimated drifts contrasts_mean : ndarray, shape (nb_voxels, len(contrasts)) Contrasts computed from NRLs contrasts_var : ndarray, shape (nb_voxels, len(contrasts)) Variance of the contrasts compute_time : list computation time of each iteration compute_time_mean : float computation mean time over iterations nrls_covar : ndarray, shape (nb_conditions, nb_conditions, nb_voxels) # TODO stimulus_induced_signal : ndarray, shape (nb_scans, nb_voxels) # TODO mahalanobis_zero : float Mahalanobis distance between estimated hrf_mean and the null vector mahalanobis_cano : float Mahalanobis distance between estimated hrf_mean and the canonical HRF mahalanobis_diff : float difference between mahalanobis_cano and mahalanobis_diff mahalanobis_prod : float product of mahalanobis_cano and mahalanobis_diff ppm_a_nrl : ndarray, shape (nb_voxels,) The posterior probability map using an alpha ppm_g_nrl : ndarray, shape (nb_voxels,) # TODO ppm_a_contrasts : ndarray, shape (nb_voxels,) # TODO ppm_g_contrasts : ndarray, shape (nb_voxels,) # TODO variation_coeff : float coefficient of variation of the HRF free_energy : list # TODO Notes ----- See `A novel definition of the multivariate coefficient of variation <http://onlinelibrary.wiley.com/doi/10.1002/bimj.201000030/abstract>`_ article for more information about the coefficient of variation. """ logger.info("VEM started.") if not contrasts: contrasts = OrderedDict() np.random.seed(seed) nb_2_norm = 1 normalizing = False regularizing = False if it_max <= 0: it_max = 100 gamma = 7.5 thresh_free_energy = 1e-4 # Initialize sizes vectors hrf_len = np.int(np.ceil(hrf_duration / dt)) + 1 nb_conditions = len(onsets) nb_scans = bold_data.shape[0] nb_voxels = bold_data.shape[1] X, occurence_matrix, condition_names = vt.create_conditions( onsets, durations, nb_conditions, nb_scans, hrf_len, tr, dt ) neighbours_indexes = vt.create_neighbours(graph) order = 2 if regularizing: regularization = np.ones(hrf_len) regularization[hrf_len//3:hrf_len//2] = 2 regularization[hrf_len//2:2*hrf_len//3] = 5 regularization[2*hrf_len//3:3*hrf_len//4] = 7 regularization[3*hrf_len//4:] = 10 # regularization[hrf_len//2:] = 10 else: regularization = None d2 = vt.buildFiniteDiffMatrix(order, hrf_len, regularization) hrf_regu_prior_inv = d2.T.dot(d2) / pow(dt, 2 * order) if estimate_hrf and zero_constraint: hrf_len = hrf_len - 2 hrf_regu_prior_inv = hrf_regu_prior_inv[1:-1, 1:-1] occurence_matrix = occurence_matrix[:, :, 1:-1] noise_struct = np.identity(nb_scans) free_energy = [1.] free_energy_crit = [1.] compute_time = [] noise_var = np.ones(nb_voxels) labels_proba = np.zeros((nb_conditions, nb_classes, nb_voxels), dtype=np.float64) logger.info("Labels are initialized by setting everything to {}".format(1./nb_classes)) labels_proba[:, :, :] = 1./nb_classes m_h = getCanoHRF(hrf_duration, dt)[1][:hrf_len] hrf_mean = np.array(m_h).astype(np.float64) if estimate_hrf: hrf_covar = np.identity(hrf_len, dtype=np.float64) else: hrf_covar = np.zeros((hrf_len, hrf_len), dtype=np.float64) beta = beta * np.ones((nb_conditions), dtype=np.float64) beta_list = [] beta_list.append(beta.copy()) if drifts_type == "poly": drift_basis = vt.poly_drifts_basis(nb_scans, 4, tr) elif drifts_type == "cos": drift_basis = vt.cosine_drifts_basis(nb_scans, 64, tr) drift_coeffs = vt.drifts_coeffs_fit(bold_data, drift_basis) drift = drift_basis.dot(drift_coeffs) bold_data_drift = bold_data - drift # Parameters Gaussian mixtures nrls_class_mean = 2 * np.ones((nb_conditions, nb_classes)) nrls_class_mean[:, 0] = 0 nrls_class_var = 0.3 * np.ones((nb_conditions, nb_classes), dtype=np.float64) nrls_mean = (np.random.normal( nrls_class_mean, nrls_class_var)[:, :, np.newaxis] * labels_proba).sum(axis=1).T nrls_covar = (np.identity(nb_conditions)[:, :, np.newaxis] + np.zeros((1, 1, nb_voxels))) start_time = time.time() loop = 0 while (loop <= it_min or ((np.asarray(free_energy_crit[-5:]) > thresh_free_energy).any() and loop < it_max)): logger.info("{:-^80}".format(" Iteration n°"+str(loop+1)+" ")) logger.info("Expectation A step...") logger.debug("Before: nrls_mean = %s, nrls_covar = %s", nrls_mean, nrls_covar) nrls_mean, nrls_covar = vt.nrls_expectation( hrf_mean, nrls_mean, occurence_matrix, noise_struct, labels_proba, nrls_class_mean, nrls_class_var, nb_conditions, bold_data_drift, nrls_covar, hrf_covar, noise_var) logger.debug("After: nrls_mean = %s, nrls_covar = %s", nrls_mean, nrls_covar) logger.info("Expectation Z step...") logger.debug("Before: labels_proba = %s, labels_proba = %s", labels_proba, labels_proba) labels_proba = vt.labels_expectation( nrls_covar, nrls_mean, nrls_class_var, nrls_class_mean, beta, labels_proba, neighbours_indexes, nb_conditions, nb_classes, nb_voxels, parallel=True) logger.debug("After: labels_proba = %s, labels_proba = %s", labels_proba, labels_proba) if estimate_hrf: logger.info("Expectation H step...") logger.debug("Before: hrf_mean = %s, hrf_covar = %s", hrf_mean, hrf_covar) hrf_mean, hrf_covar = vt.hrf_expectation( nrls_covar, nrls_mean, occurence_matrix, noise_struct, hrf_regu_prior_inv, sigma_h, nb_voxels, bold_data_drift, noise_var) if constrained: hrf_mean = vt.norm1_constraint(hrf_mean, hrf_covar) hrf_covar[:] = 0 logger.debug("After: hrf_mean = %s, hrf_covar = %s", hrf_mean, hrf_covar) # Normalizing H at each nb_2_norm iterations: if not constrained and normalizing: # Normalizing is done before sigma_h, nrls_class_mean and nrls_class_var estimation # we should not include them in the normalisation step if (loop + 1) % nb_2_norm == 0: hrf_norm = np.linalg.norm(hrf_mean) hrf_mean /= hrf_norm hrf_covar /= hrf_norm ** 2 nrls_mean *= hrf_norm nrls_covar *= hrf_norm ** 2 if estimate_hrf and estimate_sigma_h: logger.info("Maximization sigma_H step...") logger.debug("Before: sigma_h = %s", sigma_h) if hrf_hyperprior > 0: sigma_h = vt.maximization_sigmaH_prior(hrf_len, hrf_covar, hrf_regu_prior_inv, hrf_mean, hrf_hyperprior) else: sigma_h = vt.maximization_sigmaH(hrf_len, hrf_covar, hrf_regu_prior_inv, hrf_mean) logger.debug("After: sigma_h = %s", sigma_h) logger.info("Maximization (mu,sigma) step...") logger.debug("Before: nrls_class_mean = %s, nrls_class_var = %s", nrls_class_mean, nrls_class_var) nrls_class_mean, nrls_class_var = vt.maximization_class_proba( labels_proba, nrls_mean, nrls_covar ) logger.debug("After: nrls_class_mean = %s, nrls_class_var = %s", nrls_class_mean, nrls_class_var) logger.info("Maximization L step...") logger.debug("Before: drift_coeffs = %s", drift_coeffs) drift_coeffs = vt.maximization_drift_coeffs( bold_data, nrls_mean, occurence_matrix, hrf_mean, noise_struct, drift_basis ) logger.debug("After: drift_coeffs = %s", drift_coeffs) drift = drift_basis.dot(drift_coeffs) bold_data_drift = bold_data - drift if estimate_beta: logger.info("Maximization beta step...") for cond_nb in xrange(0, nb_conditions): beta[cond_nb], success = vt.beta_maximization( beta[cond_nb]*np.ones((1,)), labels_proba[cond_nb, :, :], neighbours_indexes, gamma ) beta_list.append(beta.copy()) logger.debug("beta = %s", str(beta)) logger.info("Maximization sigma noise step...") noise_var = vt.maximization_noise_var( occurence_matrix, hrf_mean, hrf_covar, nrls_mean, nrls_covar, noise_struct, bold_data_drift, nb_scans ) #### Computing Free Energy #### free_energy.append(vt.free_energy_computation( nrls_mean, nrls_covar, hrf_mean, hrf_covar, hrf_len, labels_proba, bold_data_drift, occurence_matrix, noise_var, noise_struct, nb_conditions, nb_voxels, nb_scans, nb_classes, nrls_class_mean, nrls_class_var, neighbours_indexes, beta, sigma_h, np.linalg.inv(hrf_regu_prior_inv), hrf_regu_prior_inv, gamma, hrf_hyperprior )) free_energy_crit.append(abs((free_energy[-2] - free_energy[-1]) / free_energy[-2])) logger.info("Convergence criteria: %f (Threshold = %f)", free_energy_crit[-1], thresh_free_energy) loop += 1 compute_time.append(time.time() - start_time) compute_time_mean = compute_time[-1] / loop mahalanobis_zero = np.nan mahalanobis_cano = np.nan mahalanobis_diff = np.nan mahalanobis_prod = np.nan variation_coeff = np.nan if estimate_hrf and not constrained and not normalizing: hrf_norm = np.linalg.norm(hrf_mean) hrf_mean /= hrf_norm hrf_covar /= hrf_norm ** 2 sigma_h /= hrf_norm ** 2 nrls_mean *= hrf_norm nrls_covar *= hrf_norm ** 2 nrls_class_mean *= hrf_norm nrls_class_var *= hrf_norm ** 2 mahalanobis_zero = mahalanobis(hrf_mean, np.zeros_like(hrf_mean), np.linalg.inv(hrf_covar)) mahalanobis_cano = mahalanobis(hrf_mean, m_h, np.linalg.inv(hrf_covar)) mahalanobis_diff = mahalanobis_cano - mahalanobis_zero mahalanobis_prod = mahalanobis_cano * mahalanobis_zero variation_coeff = np.sqrt((hrf_mean.T.dot(hrf_covar).dot(hrf_mean)) /(hrf_mean.T.dot(hrf_mean))**2) if estimate_hrf and zero_constraint: hrf_mean = np.concatenate(([0], hrf_mean, [0])) # when using the zero constraint the hrf covariance is fill with # arbitrary zeros around the matrix, this is maybe a bad idea if we need # it for later computation... hrf_covar = np.concatenate( (np.zeros((hrf_covar.shape[0], 1)), hrf_covar, np.zeros((hrf_covar.shape[0], 1))), axis=1 ) hrf_covar = np.concatenate( (np.zeros((1, hrf_covar.shape[1])), hrf_covar, np.zeros((1, hrf_covar.shape[1]))), axis=0 ) if estimate_hrf: (delay_of_response, delay_of_undershoot, dispersion_of_response, dispersion_of_undershoot, ratio_resp_under, delay) = vt.fit_hrf_two_gammas( hrf_mean, dt, hrf_duration ) else: (delay_of_response, delay_of_undershoot, dispersion_of_response, dispersion_of_undershoot, ratio_resp_under, delay) = (None, None, None, None, None, None) ppm_a_nrl, ppm_g_nrl = vt.ppms_computation( nrls_mean, np.diagonal(nrls_covar), nrls_class_mean, nrls_class_var, threshold_a="intersect" ) #+++++++++++++++++++++++ calculate contrast maps and variance +++++++++++++++++++++++# nb_contrasts = len(contrasts) if compute_contrasts and nb_contrasts > 0: logger.info('Computing contrasts ...') (contrasts_mean, contrasts_var, contrasts_class_mean, contrasts_class_var) = vt.contrasts_mean_var_classes( contrasts, condition_names, nrls_mean, nrls_covar, nrls_class_mean, nrls_class_var, nb_contrasts, nb_classes, nb_voxels ) ppm_a_contrasts, ppm_g_contrasts = vt.ppms_computation( contrasts_mean, contrasts_var, contrasts_class_mean, contrasts_class_var ) logger.info('Done computing contrasts.') else: (contrasts_mean, contrasts_var, contrasts_class_mean, contrasts_class_var, ppm_a_contrasts, ppm_g_contrasts) = (None, None, None, None, None, None) #+++++++++++++++++++++++ calculate contrast maps and variance +++++++++++++++++++++++# logger.info("Nb iterations to reach criterion: %d", loop) logger.info("Computational time = %s min %s s", *(str(int(x)) for x in divmod(compute_time[-1], 60))) logger.debug('nrls_class_mean: %s', nrls_class_mean) logger.debug('nrls_class_var: %s', nrls_class_var) logger.debug("sigma_H = %s", str(sigma_h)) logger.debug("beta = %s", str(beta)) stimulus_induced_signal = vt.computeFit(hrf_mean, nrls_mean, X, nb_voxels, nb_scans) snr = 20 * np.log( np.linalg.norm(bold_data.astype(np.float)) / np.linalg.norm((bold_data - stimulus_induced_signal - drift).astype(np.float)) ) snr /= np.log(10.) logger.info('snr comp = %f', snr) # ,FreeEnergyArray return (loop, nrls_mean, hrf_mean, hrf_covar, labels_proba, noise_var, nrls_class_mean, nrls_class_var, beta, drift_coeffs, drift, contrasts_mean, contrasts_var, compute_time[2:], compute_time_mean, nrls_covar, stimulus_induced_signal, mahalanobis_zero, mahalanobis_cano, mahalanobis_diff, mahalanobis_prod, ppm_a_nrl, ppm_g_nrl, ppm_a_contrasts, ppm_g_contrasts, variation_coeff, free_energy[1:], free_energy_crit[1:], beta_list[1:], delay_of_response, delay_of_undershoot, dispersion_of_response, dispersion_of_undershoot, ratio_resp_under, delay)
def jde_vem_bold(graph, bold_data, onsets, durations, hrf_duration, nb_classes, tr, beta, dt, estimate_sigma_h=True, sigma_h=0.05, it_max=-1, it_min=0, estimate_beta=True, contrasts=None, compute_contrasts=False, hrf_hyperprior=0, estimate_hrf=True, constrained=False, zero_constraint=True, drifts_type="poly", seed=6537546): """This is the main function that computes the VEM analysis on BOLD data. This function uses optimized python functions. Parameters ---------- graph : ndarray of lists represents the neighbours indexes of each voxels index bold_data : ndarray, shape (nb_scans, nb_voxels) raw data onsets : dict dictionnary of onsets durations : # TODO # TODO hrf_duration : float hrf total time duration (in s) nb_classes : int the number of classes to classify the nrls. This parameter is provided for development purposes as most of the algorithm implies two classes tr : float time of repetition beta : float the initial value of beta dt : float hrf temporal precision estimate_sigma_h : bool, optional toggle estimation of sigma H sigma_h : float, optional initial or fixed value of sigma H it_max : int, optional maximal computed iteration number it_min : int, optional minimal computed iteration number estimate_beta : bool, optional toggle the estimation of beta contrasts : OrderedDict, optional dict of contrasts to compute compute_contrasts : bool, optional if True, compute the contrasts defined in contrasts hrf_hyperprior : float # TODO estimate_hrf : bool, optional if True, estimate the HRF for each parcel, if False use the canonical HRF constrained : bool, optional if True, add a constrains the l2 norm of the HRF to 1 zero_constraint : bool, optional if True, add zeros to the beginning and the end of the estimated HRF. drifts_type : str, optional set the drifts basis type used. Can be "poly" for polynomial or "cos" for cosine seed : int, optional seed used by numpy to initialize random generator number Returns ------- loop : int number of iterations before convergence nrls_mean : ndarray, shape (nb_voxels, nb_conditions) Neural response level mean value hrf_mean : ndarray, shape (hrf_len,) Hemodynamic response function mean value hrf_covar : ndarray, shape (hrf_len, hrf_len) Covariance matrix of the HRF labels_proba : ndarray, shape (nb_conditions, nb_classes, nb_voxels) probability of voxels being in one class noise_var : ndarray, shape (nb_voxels,) estimated noise variance nrls_class_mean : ndarray, shape (nb_conditions, nb_classes) estimated mean value of the gaussians of the classes nrls_class_var : ndarray, shape (nb_conditions, nb_classes) estimated variance of the gaussians of the classes beta : ndarray, shape (nb_conditions,) estimated beta drift_coeffs : ndarray, shape (# TODO) estimated coefficient of the drifts drift : ndarray, shape (# TODO) estimated drifts contrasts_mean : ndarray, shape (nb_voxels, len(contrasts)) Contrasts computed from NRLs contrasts_var : ndarray, shape (nb_voxels, len(contrasts)) Variance of the contrasts compute_time : list computation time of each iteration compute_time_mean : float computation mean time over iterations nrls_covar : ndarray, shape (nb_conditions, nb_conditions, nb_voxels) # TODO stimulus_induced_signal : ndarray, shape (nb_scans, nb_voxels) # TODO mahalanobis_zero : float Mahalanobis distance between estimated hrf_mean and the null vector mahalanobis_cano : float Mahalanobis distance between estimated hrf_mean and the canonical HRF mahalanobis_diff : float difference between mahalanobis_cano and mahalanobis_diff mahalanobis_prod : float product of mahalanobis_cano and mahalanobis_diff ppm_a_nrl : ndarray, shape (nb_voxels,) The posterior probability map using an alpha ppm_g_nrl : ndarray, shape (nb_voxels,) # TODO ppm_a_contrasts : ndarray, shape (nb_voxels,) # TODO ppm_g_contrasts : ndarray, shape (nb_voxels,) # TODO variation_coeff : float coefficient of variation of the HRF free_energy : list # TODO Notes ----- See `A novel definition of the multivariate coefficient of variation <http://onlinelibrary.wiley.com/doi/10.1002/bimj.201000030/abstract>`_ article for more information about the coefficient of variation. """ logger.info("VEM started.") if not contrasts: contrasts = OrderedDict() np.random.seed(seed) nb_2_norm = 1 normalizing = False regularizing = False if it_max <= 0: it_max = 100 gamma = 7.5 # Initialize sizes vectors hrf_len = np.int(np.ceil(hrf_duration / dt)) + 1 nb_conditions = len(onsets) nb_scans = bold_data.shape[0] nb_voxels = bold_data.shape[1] X, occurence_matrix, condition_names = vt.create_conditions( onsets, durations, nb_conditions, nb_scans, hrf_len, tr, dt) neighbours_indexes = vt.create_neighbours(graph) order = 2 if regularizing: regularization = np.ones(hrf_len) regularization[hrf_len // 3:hrf_len // 2] = 2 regularization[hrf_len // 2:2 * hrf_len // 3] = 5 regularization[2 * hrf_len // 3:3 * hrf_len // 4] = 7 regularization[3 * hrf_len // 4:] = 10 # regularization[hrf_len//2:] = 10 else: regularization = None d2 = vt.buildFiniteDiffMatrix(order, hrf_len, regularization) hrf_regu_prior_inv = d2.T.dot(d2) / pow(dt, 2 * order) if estimate_hrf and zero_constraint: hrf_len = hrf_len - 2 hrf_regu_prior_inv = hrf_regu_prior_inv[1:-1, 1:-1] occurence_matrix = occurence_matrix[:, :, 1:-1] noise_struct = np.identity(nb_scans) noise_var = np.ones(nb_voxels) if nb_classes != 2: logger.warn('The number of classes is different to two.') labels_proba = np.zeros((nb_conditions, nb_classes, nb_voxels), dtype=np.float64) logger.info("Labels are initialized by setting everything to {}".format( 1. / nb_classes)) labels_proba[:, :, :] = 1. / nb_classes m_h = getCanoHRF(hrf_duration, dt)[1][:hrf_len] hrf_mean = np.array(m_h).astype(np.float64) if estimate_hrf: hrf_covar = np.identity(hrf_len, dtype=np.float64) else: hrf_covar = np.zeros((hrf_len, hrf_len), dtype=np.float64) beta = beta * np.ones(nb_conditions, dtype=np.float64) beta_list = [beta.copy()] if drifts_type == "poly": drift_basis = vt.poly_drifts_basis(nb_scans, 4, tr) elif drifts_type == "cos": drift_basis = vt.cosine_drifts_basis(nb_scans, 64, tr) else: raise Exception('drift type "%s" is not supported' % drifts_type) drift_coeffs = vt.drifts_coeffs_fit(bold_data, drift_basis) drift = drift_basis.dot(drift_coeffs) bold_data_drift = bold_data - drift # Parameters Gaussian mixtures nrls_class_mean = 2 * np.ones((nb_conditions, nb_classes)) nrls_class_mean[:, 0] = 0 nrls_class_var = 0.3 * np.ones( (nb_conditions, nb_classes), dtype=np.float64) nrls_mean = ( np.random.normal(nrls_class_mean, nrls_class_var)[:, :, np.newaxis] * labels_proba).sum(axis=1).T nrls_covar = np.identity(nb_conditions)[:, :, np.newaxis] + np.zeros( (1, 1, nb_voxels)) thresh_free_energy = 1e-4 free_energy = [1.] free_energy_crit = [1.] compute_time = [] start_time = time.time() loop = 0 while (loop <= it_min or ((np.asarray(free_energy_crit[-5:]) > thresh_free_energy).any() and loop < it_max)): logger.info("{:-^80}".format(" Iteration n°" + str(loop + 1) + " ")) logger.info("Expectation A step...") logger.debug("Before: nrls_mean = %s, nrls_covar = %s", nrls_mean, nrls_covar) nrls_mean, nrls_covar = vt.nrls_expectation( hrf_mean, nrls_mean, occurence_matrix, noise_struct, labels_proba, nrls_class_mean, nrls_class_var, nb_conditions, bold_data_drift, nrls_covar, hrf_covar, noise_var) logger.debug("After: nrls_mean = %s, nrls_covar = %s", nrls_mean, nrls_covar) logger.info("Expectation Z step...") logger.debug("Before: labels_proba = %s, labels_proba = %s", labels_proba, labels_proba) labels_proba = vt.labels_expectation(nrls_covar, nrls_mean, nrls_class_var, nrls_class_mean, beta, labels_proba, neighbours_indexes, nb_conditions, nb_classes, nb_voxels, parallel=True) logger.debug("After: labels_proba = %s, labels_proba = %s", labels_proba, labels_proba) if estimate_hrf: logger.info("Expectation H step...") logger.debug("Before: hrf_mean = %s, hrf_covar = %s", hrf_mean, hrf_covar) hrf_mean, hrf_covar = vt.hrf_expectation( nrls_covar, nrls_mean, occurence_matrix, noise_struct, hrf_regu_prior_inv, sigma_h, nb_voxels, bold_data_drift, noise_var) if constrained: hrf_mean = vt.norm1_constraint(hrf_mean, hrf_covar) hrf_covar[:] = 0 logger.debug("After: hrf_mean = %s, hrf_covar = %s", hrf_mean, hrf_covar) # Normalizing H at each nb_2_norm iterations: if not constrained and normalizing: # Normalizing is done before sigma_h, nrls_class_mean and nrls_class_var estimation # we should not include them in the normalisation step if (loop + 1) % nb_2_norm == 0: hrf_norm = np.linalg.norm(hrf_mean) hrf_mean /= hrf_norm hrf_covar /= hrf_norm**2 nrls_mean *= hrf_norm nrls_covar *= hrf_norm**2 if estimate_hrf and estimate_sigma_h: logger.info("Maximization sigma_H step...") logger.debug("Before: sigma_h = %s", sigma_h) if hrf_hyperprior > 0: sigma_h = vt.maximization_sigmaH_prior(hrf_len, hrf_covar, hrf_regu_prior_inv, hrf_mean, hrf_hyperprior) else: sigma_h = vt.maximization_sigmaH(hrf_len, hrf_covar, hrf_regu_prior_inv, hrf_mean) logger.debug("After: sigma_h = %s", sigma_h) logger.info("Maximization (mu,sigma) step...") logger.debug("Before: nrls_class_mean = %s, nrls_class_var = %s", nrls_class_mean, nrls_class_var) nrls_class_mean, nrls_class_var = vt.maximization_class_proba( labels_proba, nrls_mean, nrls_covar) logger.debug("After: nrls_class_mean = %s, nrls_class_var = %s", nrls_class_mean, nrls_class_var) logger.info("Maximization L step...") logger.debug("Before: drift_coeffs = %s", drift_coeffs) drift_coeffs = vt.maximization_drift_coeffs(bold_data, nrls_mean, occurence_matrix, hrf_mean, noise_struct, drift_basis) logger.debug("After: drift_coeffs = %s", drift_coeffs) drift = drift_basis.dot(drift_coeffs) bold_data_drift = bold_data - drift if estimate_beta: logger.info("Maximization beta step...") for cond_nb in xrange(0, nb_conditions): beta[cond_nb], success = vt.beta_maximization( beta[cond_nb] * np.ones((1, )), labels_proba[cond_nb, :, :], neighbours_indexes, gamma) beta_list.append(beta.copy()) logger.debug("beta = %s", str(beta)) logger.info("Maximization sigma noise step...") noise_var = vt.maximization_noise_var(occurence_matrix, hrf_mean, hrf_covar, nrls_mean, nrls_covar, noise_struct, bold_data_drift, nb_scans) # Computing Free Energy free_energy.append( vt.free_energy_computation( nrls_mean, nrls_covar, hrf_mean, hrf_covar, hrf_len, labels_proba, bold_data_drift, occurence_matrix, noise_var, noise_struct, nb_conditions, nb_voxels, nb_scans, nb_classes, nrls_class_mean, nrls_class_var, neighbours_indexes, beta, sigma_h, np.linalg.inv(hrf_regu_prior_inv), hrf_regu_prior_inv, gamma, hrf_hyperprior)) free_energy_crit.append( abs((free_energy[-2] - free_energy[-1]) / free_energy[-2])) logger.info("Convergence criteria: %f (Threshold = %f)", free_energy_crit[-1], thresh_free_energy) loop += 1 compute_time.append(time.time() - start_time) compute_time_mean = compute_time[-1] / loop mahalanobis_zero = np.nan mahalanobis_cano = np.nan mahalanobis_diff = np.nan mahalanobis_prod = np.nan variation_coeff = np.nan if estimate_hrf and not constrained and not normalizing: hrf_norm = np.linalg.norm(hrf_mean) hrf_mean /= hrf_norm hrf_covar /= hrf_norm**2 sigma_h /= hrf_norm**2 nrls_mean *= hrf_norm nrls_covar *= hrf_norm**2 nrls_class_mean *= hrf_norm nrls_class_var *= hrf_norm**2 mahalanobis_zero = mahalanobis(hrf_mean, np.zeros_like(hrf_mean), np.linalg.inv(hrf_covar)) mahalanobis_cano = mahalanobis(hrf_mean, m_h, np.linalg.inv(hrf_covar)) mahalanobis_diff = mahalanobis_cano - mahalanobis_zero mahalanobis_prod = mahalanobis_cano * mahalanobis_zero variation_coeff = np.sqrt((hrf_mean.T.dot(hrf_covar).dot(hrf_mean)) / (hrf_mean.T.dot(hrf_mean))**2) if estimate_hrf and zero_constraint: hrf_mean = np.concatenate(([0], hrf_mean, [0])) # when using the zero constraint the hrf covariance is fill with # arbitrary zeros around the matrix, this is maybe a bad idea if we need # it for later computation... hrf_covar = np.concatenate((np.zeros( (hrf_covar.shape[0], 1)), hrf_covar, np.zeros((hrf_covar.shape[0], 1))), axis=1) hrf_covar = np.concatenate((np.zeros( (1, hrf_covar.shape[1])), hrf_covar, np.zeros((1, hrf_covar.shape[1]))), axis=0) if estimate_hrf: (delay_of_response, delay_of_undershoot, dispersion_of_response, dispersion_of_undershoot, ratio_resp_under, delay) = vt.fit_hrf_two_gammas(hrf_mean, dt, hrf_duration) else: (delay_of_response, delay_of_undershoot, dispersion_of_response, dispersion_of_undershoot, ratio_resp_under, delay) = (None, None, None, None, None, None) ppm_a_nrl, ppm_g_nrl = vt.ppms_computation(nrls_mean, np.diagonal(nrls_covar), nrls_class_mean, nrls_class_var, threshold_a="intersect") # Calculate contrast maps and variance nb_contrasts = len(contrasts) if compute_contrasts and nb_contrasts > 0: logger.info('Computing contrasts ...') (contrasts_mean, contrasts_var, contrasts_class_mean, contrasts_class_var) = vt.contrasts_mean_var_classes( contrasts, condition_names, nrls_mean, nrls_covar, nrls_class_mean, nrls_class_var, nb_contrasts, nb_classes, nb_voxels) ppm_a_contrasts, ppm_g_contrasts = vt.ppms_computation( contrasts_mean, contrasts_var, contrasts_class_mean, contrasts_class_var) logger.info('Done computing contrasts.') else: (contrasts_mean, contrasts_var, contrasts_class_mean, contrasts_class_var, ppm_a_contrasts, ppm_g_contrasts) = (None, None, None, None, None, None) logger.info("Number of iterations to reach criterion: %d", loop) logger.info("Computational time = {t[0]:.0f} min {t[1]:.0f} s".format( t=divmod(compute_time[-1], 60))) logger.debug('nrls_class_mean: %s', nrls_class_mean) logger.debug('nrls_class_var: %s', nrls_class_var) logger.debug("sigma_H = %s", str(sigma_h)) logger.debug("beta = %s", str(beta)) stimulus_induced_signal = vt.computeFit(hrf_mean, nrls_mean, X, nb_voxels, nb_scans) snr = 20 * np.log( np.linalg.norm(bold_data.astype(np.float)) / np.linalg.norm( (bold_data_drift - stimulus_induced_signal).astype(np.float))) snr /= np.log(10.) logger.info('SNR comp = %f', snr) return (loop, nrls_mean, hrf_mean, hrf_covar, labels_proba, noise_var, nrls_class_mean, nrls_class_var, beta, drift_coeffs, drift, contrasts_mean, contrasts_var, compute_time[2:], compute_time_mean, nrls_covar, stimulus_induced_signal, mahalanobis_zero, mahalanobis_cano, mahalanobis_diff, mahalanobis_prod, ppm_a_nrl, ppm_g_nrl, ppm_a_contrasts, ppm_g_contrasts, variation_coeff, free_energy[1:], free_energy_crit[1:], beta_list[1:], delay_of_response, delay_of_undershoot, dispersion_of_response, dispersion_of_undershoot, ratio_resp_under, delay)