Exemple #1
0
def plotter(fdict):
    """ Go """
    ctx = get_autoplot_context(fdict, get_description())
    get_data(ctx)

    title = ("Consecutive Days with %s Temp " "above(+)/below(-) Average") % (
        ctx["var"].capitalize(),
    )
    if ctx["var"] == "precip":
        title = "Days Since Last Measurable Precipitation"
    mp = MapPlot(
        sector=ctx["sector"],
        state=ctx["state"],
        cwa=(ctx["wfo"] if len(ctx["wfo"]) == 3 else ctx["wfo"][1:]),
        axisbg="tan",
        statecolor="#EEEEEE",
        title=title,
        subtitle=ctx["subtitle"],
    )
    df2 = ctx["df"][pd.notnull(ctx["df"]["lon"])]
    mp.plot_values(
        df2["lon"].values,
        df2["lat"].values,
        df2["val"].values,
        color=df2["color"].values,
        labels=df2["label"].values,
        labeltextsize=(8 if ctx["sector"] != "state" else 12),
        textsize=(12 if ctx["sector"] != "state" else 16),
        labelbuffer=10,
    )

    return mp.fig, ctx["df"]
Exemple #2
0
def plotter(fdict):
    """ Go """
    from pyiem.plot.geoplot import MapPlot
    import matplotlib.pyplot as plt
    ctx = get_autoplot_context(fdict, get_description())
    station = ctx['station']
    nt = NetworkTable(ctx['network'])
    year = ctx['year']

    dbconn = get_dbconn('coop')

    table = "alldata_%s" % (station[:2], )
    df = read_sql("""
    with yearly as (
        select year, sum(precip), station from alldata_ia
        where precip is not null and sday < '1012' GROUP by station, year),
    ames as (
        select year, sum from yearly where station = %s),
    combo as (
        select y.year, y.station, y.sum as other, a.sum as ames
        from yearly y JOIN ames a on (y.year = a.year)
        WHERE y.station != %s and y.station != 'IA0807'),
    y2017 as (
        select * from combo where year = 2017),
    agg as (
        SELECT station, st_x(geom) as lon, st_y(geom) as lat,
        sum(case when other > ames then 1 else 0 end) as hits, count(*)
        from combo c JOIN stations t on (c.station = t.id)
        WHERE t.network = %s and c.year < 2017
        GROUP by station, lon, lat)
    SELECT y.ames as ames, y.other as other, a.* from
    y2017 y JOIN agg a on (y.station = a.station)
     """,
                  dbconn,
                  params=(station, station, ctx['network']),
                  index_col='station')
    df = df[df['count'] > 50]
    df['h2017'] = 'red'
    df.loc[df['other'] > df['ames'], 'h2017'] = 'blue'
    df['freq'] = df['hits'] / df['count'] * 100.
    df.sort_values('freq', inplace=True)

    mp = MapPlot(continentalcolor='white',
                 title=('Percentage of Years with Higher Precipitation Total '
                        'than Ames'),
                 subtitle=('For 1 January thru 12 October Period, sites '
                           'in blue are higher for 2017'))
    mp.plot_values(df['lon'].values,
                   df['lat'].values,
                   df['freq'].values,
                   '%.0f',
                   labelbuffer=1,
                   color=df['h2017'].values)
    #mp.contourf(df['lon'].values, df['lat'].values, df['freq'].values,
    #            range(0, 101, 10), cmap=plt.get_cmap('plasma_r'))
    mp.drawcounties()
    return mp.fig, df
Exemple #3
0
def plotter(fdict):
    """ Go """
    pgconn = get_dbconn('coop')
    ctx = get_autoplot_context(fdict, get_description())
    sector = ctx['sector']
    if len(sector) != 2:
        raise ValueError("Sorry, this app does not support multi-state plots.")
    varname = ctx['var']
    year = ctx['year']
    popt = ctx['popt']
    threshold = ctx['threshold']
    table = "alldata_%s" % (sector, )
    df = read_sql("""
    WITH data as (
        SELECT station, """ + SQLOPT[varname] + """ as doy
        from """ + table + """
        WHERE year = %s GROUP by station
    )
    select station, doy, st_x(geom) as lon, st_y(geom) as lat
    from data d JOIN stations t on (d.station = t.id) WHERE
    t.network = %s and substr(station, 3, 4) != '0000'
    and substr(station, 3, 1) != 'C' and doy not in (0, 400) ORDER by doy
    """,
                  pgconn,
                  params=(threshold, year, '%sCLIMATE' % (sector, )),
                  index_col='station')
    if df.empty:
        raise ValueError("No data found!")

    def f(val):
        ts = datetime.date(year, 1, 1) + datetime.timedelta(days=int(val - 1))
        return ts.strftime("%-m/%-d")

    df['pdate'] = df['doy'].apply(f)

    mp = MapPlot(sector=('state' if len(sector) == 2 else sector),
                 state=ctx['sector'],
                 continental_color='white',
                 nocaption=True,
                 title=r"%s %s %s$^\circ$F" %
                 (year, PDICT2[varname], threshold),
                 subtitle='based on NWS COOP and IEM Daily Estimates')
    levs = np.linspace(df['doy'].min() - 3, df['doy'].max() + 3, 7, dtype='i')
    levlables = list(map(f, levs))
    if popt == 'contour':
        mp.contourf(df['lon'],
                    df['lat'],
                    df['doy'],
                    levs,
                    clevlabels=levlables)
    mp.plot_values(df['lon'], df['lat'], df['pdate'], labelbuffer=5)
    mp.drawcounties()

    return mp.fig, df
Exemple #4
0
def plotter(fdict):
    """ Go """
    pgconn = get_dbconn("coop")
    ctx = get_autoplot_context(fdict, get_description())
    sector = ctx["sector"]
    if len(sector) != 2:
        raise NoDataFound("Sorry, this app doesn't support multi-state plots.")
    varname = ctx["var"]
    year = ctx["year"]
    popt = ctx["popt"]
    threshold = ctx["threshold"]
    table = "alldata_%s" % (sector,)
    nt = NetworkTable("%sCLIMATE" % (sector,))
    syear = ctx.get("syear", 1893)
    eyear = ctx.get("eyear", datetime.date.today().year)
    df = read_sql(
        """
        -- get the domain of data
        WITH events as (
            SELECT
            station, month,
            case when month < 7 then year - 1 else year end as winter_year,
            year,
            extract(doy from day) as doy,
            day
            from """
        + table
        + """
            WHERE """
        + SQLOPT[varname]
        + """ and
            month in %s and
            substr(station, 3, 4) != '0000'
            and substr(station, 3, 1) not in ('C', 'T')
            and year >= %s and year <= %s
        ), agg as (
            SELECT station, winter_year, year, doy, day,
            case when month < 7 then doy + 366 else doy end as winter_doy,
            rank() OVER (
                PARTITION by """
        + YRGP[varname]
        + """, station
                ORDER by day """
        + ORDER[varname]
        + """)
            from events)
        select * from agg where rank = 1
        """,
        pgconn,
        params=(threshold, tuple(MONTH_DOMAIN[varname]), syear, eyear),
        index_col="station",
    )

    doy = USEDOY[varname]

    def f(val):
        """Make a pretty date."""
        base = datetime.date(2000, 1, 1)
        date = base + datetime.timedelta(days=int(val))
        return date.strftime("%-m/%-d")

    if ctx.get("p") is None:
        df2 = df[df[YRGP[varname]] == year].copy()
        title = r"%s %s %s$^\circ$F" % (year, PDICT2[varname], threshold)
        df2["pdate"] = df2["day"].apply(lambda x: x.strftime("%-m/%-d"))
        extra = ""
    else:
        df2 = df[[doy]].groupby("station").quantile(ctx["p"] / 100.0).copy()
        title = r"%.0f%s Percentile Date of %s %s$^\circ$F" % (
            ctx["p"],
            th(str(ctx["p"])),
            PDICT2[varname],
            threshold,
        )
        df2["pdate"] = df2[doy].apply(f)
        extra = ", period of record: %.0f-%.0f" % (
            df["year"].min(),
            df["year"].max(),
        )
    if df2.empty:
        raise NoDataFound("No Data was found")
    for station in df2.index.values:
        if station not in nt.sts:
            continue
        df2.at[station, "lat"] = nt.sts[station]["lat"]
        df2.at[station, "lon"] = nt.sts[station]["lon"]

    mp = MapPlot(
        sector="state",
        state=ctx["sector"],
        continental_color="white",
        nocaption=True,
        title=title,
        subtitle="based on NWS COOP and IEM Daily Estimates%s" % (extra,),
    )
    levs = np.linspace(df2[doy].min() - 1, df2[doy].max() + 1, 7, dtype="i")
    if "cint" in ctx:
        levs = np.arange(
            df2[doy].min() - 1, df2[doy].max() + 1, ctx["cint"], dtype="i"
        )
    levlables = list(map(f, levs))
    if popt == "contour":
        mp.contourf(
            df2["lon"],
            df2["lat"],
            df2[doy],
            levs,
            clevlabels=levlables,
            cmap=ctx["cmap"],
        )
    mp.plot_values(df2["lon"], df2["lat"], df2["pdate"], labelbuffer=5)
    mp.drawcounties()

    return mp.fig, df[["year", "winter_doy", "doy"]]
Exemple #5
0
def plotter(fdict):
    """ Go """
    pgconn = get_dbconn('iem')
    ctx = get_autoplot_context(fdict, get_description())
    varname = ctx['var']
    sector = ctx['sector']
    state = ctx['state']
    wfo = ctx['wfo']

    nt = NetworkTable("NWSCLI")
    today = ctx['sdate']
    yesterday = today - datetime.timedelta(days=1)
    d180 = today - datetime.timedelta(days=180)

    df = read_sql("""
     with obs as (
      select station, valid,
      (case when low > low_normal then 1 else 0 end) as low_hit,
      (case when high > high_normal then 1 else 0 end) as high_hit,
      (case when precip >= 0.01 then 1 else 0 end) as precip_hit
      from cli_data
      where high is not null
      and high_normal is not null and low is not null and
      low_normal is not null
      and valid > %s and valid <= %s),

      totals as (
      SELECT station,
      max(case when low_hit = 0 then valid else %s end) as last_low_below,
      max(case when low_hit = 1 then valid else %s end) as last_low_above,
      max(case when high_hit = 0 then valid else %s end) as last_high_below,
      max(case when high_hit = 1 then valid else %s end) as last_high_above,
      max(case when precip_hit = 0 then valid else %s end) as last_dry,
      max(case when precip_hit = 1 then valid else %s end) as last_wet,
      count(*) as count from obs GROUP by station)

      SELECT station, last_low_below, last_low_above, last_high_below,
      last_high_above, last_dry, last_wet
      from totals where count > 170
    """,
                  pgconn,
                  params=(d180, today, d180, d180, d180, d180, d180, d180),
                  index_col='station')

    lats = []
    lons = []
    vals = []
    colors = []
    labels = []
    df['precip_days'] = (df['last_dry'] - df['last_wet']).dt.days
    df['low_days'] = (df['last_low_above'] - df['last_low_below']).dt.days
    df['high_days'] = (df['last_high_above'] - df['last_high_below']).dt.days
    # reorder the frame so that the largest values come first
    df = df.reindex(df[varname +
                       '_days'].abs().sort_values(ascending=False).index)

    for station, row in df.iterrows():
        if station not in nt.sts:
            continue
        lats.append(nt.sts[station]['lat'])
        lons.append(nt.sts[station]['lon'])
        if varname == 'precip':
            last_wet = row['last_wet']
            days = 0 if last_wet in [today, yesterday] else row['precip_days']
        else:
            days = row[varname + '_days']
        vals.append(days)
        colors.append('r' if days > 0 else 'b')
        labels.append(station[1:])

    title = ('Consecutive Days with %s Temp '
             'above(+)/below(-) Average') % (varname.capitalize(), )
    if varname == 'precip':
        title = 'Days Since Last Measurable Precipitation'
    mp = MapPlot(sector=sector,
                 state=state,
                 cwa=(wfo if len(wfo) == 3 else wfo[1:]),
                 axisbg='tan',
                 statecolor='#EEEEEE',
                 title=title,
                 subtitle=('based on NWS CLI Sites, map approximately '
                           'valid for %s') % (today.strftime("%-d %b %Y"), ))
    mp.plot_values(lons,
                   lats,
                   vals,
                   color=colors,
                   labels=labels,
                   labeltextsize=(8 if sector != 'state' else 12),
                   textsize=(12 if sector != 'state' else 16),
                   labelbuffer=10)

    return mp.fig, df
Exemple #6
0
def make_overviewmap(form):
    """Draw a pretty map of just the HUC."""
    huc = form.get("huc")
    plt.close()
    projection = EPSG[5070]
    if huc is None:
        huclimiter = ""
    elif len(huc) >= 8:
        huclimiter = " and substr(huc_12, 1, 8) = '%s' " % (huc[:8],)
    with get_sqlalchemy_conn("idep") as conn:
        df = read_postgis(
            f"""
            SELECT simple_geom as geom, huc_12,
            ST_x(ST_Transform(ST_Centroid(geom), 4326)) as centroid_x,
            ST_y(ST_Transform(ST_Centroid(geom), 4326)) as centroid_y,
            hu_12_name
            from huc12 i WHERE i.scenario = 0 {huclimiter}
        """,
            conn,
            geom_col="geom",
            index_col="huc_12",
        )
    minx, miny, maxx, maxy = df["geom"].total_bounds
    buf = float(form.get("zoom", 10.0)) * 1000.0  # 10km
    hucname = "" if huc not in df.index else df.at[huc, "hu_12_name"]
    subtitle = "The HUC8 is in tan"
    if len(huc) == 12:
        subtitle = "HUC12 highlighted in red, the HUC8 it resides in is in tan"
    m = MapPlot(
        axisbg="#EEEEEE",
        logo="dep",
        sector="custom",
        south=miny - buf,
        north=maxy + buf,
        west=minx - buf,
        east=maxx + buf,
        projection=projection,
        continentalcolor="white",
        title="DEP HUC %s:: %s" % (huc, hucname),
        subtitle=subtitle,
        titlefontsize=20,
        subtitlefontsize=18,
        caption="Daily Erosion Project",
    )
    for _huc12, row in df.iterrows():
        p = Polygon(
            row["geom"].exterior.coords,
            fc="red" if _huc12 == huc else "tan",
            ec="k",
            zorder=Z_OVERLAY2,
            lw=0.1,
        )
        m.ax.add_patch(p)
        # If this is our HUC, add some text to prevent cities overlay overlap
        if _huc12 == huc:
            m.plot_values(
                [row["centroid_x"]],
                [row["centroid_y"]],
                ["    .    "],
                color="None",
                outlinecolor="None",
            )
    if huc is not None:
        m.drawcounties()
        m.drawcities()
    ram = BytesIO()
    plt.savefig(ram, format="png", dpi=100)
    plt.close()
    ram.seek(0)
    return ram.read(), True