idf = args["idf"]
else:
    codebook = "codebook\\vocab.cpickle"
    features_db = "features\\featuresquiz.hdf5"
    bovw_db = "output\\bowv.hdf5"
    maxBufferSize = 1000
    idf = "output\\idf.pickle"

# load the codebook vocabulary and initialize the bag-of-visual-words transformer
vocab = cPickle.loads(open(codebook, "rb").read())
bovw = BagOfVisualWords(vocab)

# open the features database and initialize the bag-of-visual-words indexer
featuresDB = h5py.File(features_db, mode="r")
bi = BOVWIndexer(bovw.codebook.shape[0],
                 bovw_db,
                 estNumImages=featuresDB["image_ids"].shape[0],
                 maxBufferSize=maxBufferSize)

# loop over the image IDs and index
for (i,
     (imageID,
      offset)) in enumerate(zip(featuresDB["image_ids"], featuresDB["index"])):
    # check to see if progress should be displayed
    if i > 0 and i % 10 == 0:
        bi._debug("processed {} images".format(i), msgType="[PROGRESS]")

    # extract the feature vectors for the current image using the starting and
    # ending offsets (while ignoring the keypoints) and then quantize the
    # features to construct the bag-of-visual-words histogram
    features = featuresDB["features"][offset[0]:offset[1]][:, 2:]
    hist = bovw.describe(features)
Exemple #2
0
ap.add_argument(
    "-s",
    "--max-buffer-size",
    type=int,
    default=500,
    help="Maximum buffer size for # of features to be stored in memory")
args = vars(ap.parse_args())

# load the codebook vocabulary and initialize the bag-of-visual-words transformer
vocab = cPickle.loads(open(args["codebook"]).read())
bovw = BagOfVisualWords(vocab)

# open the features database and initialize the bag-of-visual-words indexer
featuresDB = h5py.File(args["features_db"], mode="r")
bi = BOVWIndexer(bovw.codebook.shape[0],
                 args["bovw_db"],
                 estNumImages=featuresDB["image_ids"].shape[0],
                 maxBufferSize=args["max_buffer_size"])

# loop over the image IDs and index
for (i,
     (imageID,
      offset)) in enumerate(zip(featuresDB["image_ids"], featuresDB["index"])):
    # check to see if progress should be displayed
    if i > 0 and i % 10 == 0:
        bi._debug("processed {} images".format(i), msgType="[PROGRESS]")

    # extract the feature vectors for the current image using the starting and
    # ending offsets (while ignoring the keypoints) and then quantize the
    # features to construct the bag-of-visual-words histogram
    features = featuresDB["features"][offset[0]:offset[1]][:, 2:]
    hist = bovw.describe(features)
ap.add_argument(
    "-s",
    "--max-buffer-size",
    type=int,
    default=500,
    help="Maximum buffer size for # of features to be stored in memory")
args = vars(ap.parse_args())

# load the codebook vocabulary and initialize the bag-of-visual-words transformer
vocab = cPickle.loads(open(args["codebook"]).read())
bovw = BagOfVisualWords(vocab)

# open the features database and initialize the bag-of-visual-words indexer
featuresDB = h5py.File(args["features_db"], mode="r")
bi = BOVWIndexer(bovw.codebook.shape[0],
                 args["bovw_db"],
                 estNumImages=featuresDB["image_ids"].shape[0],
                 maxBufferSize=args["max_buffer_size"])

# loop over the image IDs and index
for (i,
     (imageID,
      offset)) in enumerate(zip(featuresDB["image_ids"], featuresDB["index"])):
    # extract the feature vectors for the current image using the starting and
    # ending offsets (while ignoring the keypoints) and then quantize the
    # features to construct the bag-of-visual-words histogram
    features = featuresDB["features"][offset[0]:offset[1]][:, 2:]
    hist = bovw.describe(features)

    # normalize the histogram such that it sums to one then add the
    # bag-of-visual-words to the index
    hist /= hist.sum()