Exemple #1
0
def map(
    imbin_file,
    som_file,
    map_file,
    trans_file,
    som_width,
    som_height,
    cpu_only=False,
    nrot=360,
    numthreads=10,
    overwrite=False,
    log=True,
):
    # /// Map through SOM \\\
    imgs = pu.ImageReader(imbin_file)
    if not os.path.exists(map_file) or overwrite:
        map_imbin(
            imbin_file,
            som_file,
            map_file,
            trans_file,
            som_width,
            som_height,
            numthreads=numthreads,
            cpu=cpu_only,
            nrot=nrot,
            log=log,
        )

    som = pu.SOM(som_file)
    mapping = pu.Mapping(map_file)
    transform = pu.Transform(trans_file)
    somset = pu.SOMSet(som, mapping, transform)
    return somset
Exemple #2
0
def preprocess(
    radio_cat,
    imbin_file,
    img_size=(2, 150, 150),
    tile_cutout_path="",
    remove_tile_cutouts=False,
    overwrite=False,
):
    # /// Preprocess Data \\\
    if not os.path.exists(imbin_file) or overwrite:
        preprocessing.main(radio_cat, imbin_file, img_size, tile_cutout_path)

    if remove_tile_cutouts:
        shutil.rmtree(tile_cutout_path)

    imgs = pu.ImageReader(imbin_file)
    return imgs
    return gaussian_2d(X, Y, 1, img_x / 2, img_y / 2, sig_x, sig_y, 0)


def taper_img(img, **kwargs):
    return img * kernel(img.shape, **kwargs)


def reweight(data, old_weights, new_weights):
    data = np.array(data)
    for chan in range(data.shape[1]):
        data[:, chan] *= new_weights[chan] / old_weights[chan]
    return data


imgs = pu.ImageReader(
    "EMU_WISE_E95E05_Aegean_Components_Complex_EMUWISE_IslandNorm_Log_Reprojected.bin"
)

# data = imgs.reweight(old_weights=(0.95, 0.05), new_weights=(1, 1))
data = reweight(imgs.data, (0.95, 0.05), (1, 1))
data = taper_img(data, fwhm_frac=0.5)

i = np.random.randint(imgs.data.shape[0])
fig, axes = plt.subplots(2, 2, figsize=(8, 8))
axes[0, 0].imshow(imgs.data[i, 0])
axes[0, 1].imshow(imgs.data[i, 1])
axes[1, 0].imshow(data[i, 0])
axes[1, 1].imshow(data[i, 1])

rad_tot = data[:, 0].reshape(-1, 150 * 150).sum(axis=1)
ir_tot = data[:, 1].reshape(-1, 150 * 150).sum(axis=1)
Exemple #4
0
            som_width,
            som_height,
            numthreads=cpu_count(),
            cpu=args.cpu,
            nrot=360,
            log=True,
        )
    else:
        print(
            f"Mapping binary {map_file} and Transform file {trans_file} already exist...skipping."
        )

    # CONTINUE HERE if Mapping was done on a different machine.

    # Update the component catalogue with the sidelobe probability
    imgs = pu.ImageReader(imbin_file)

    # Output a table of components that failed to preprocess
    # This is usually due to missing files
    failed = sample.iloc[list(set(sample.index).difference(
        imgs.records))].reset_index(drop=True)
    Table.from_pandas(failed).write(f"{cat_name}_failed.fits", overwrite=True)

    # Output a table of all preprocessed components.
    # This matches the length of the IMG and MAP binaries, which makes
    # it useful for inspecting the results.
    sample = sample.iloc[imgs.records].reset_index(drop=True)
    Table.from_pandas(sample).write(f"{cat_name}_preprocessed.fits",
                                    overwrite=True)
    del imgs
Exemple #5
0
    print(f"  \centering", file=outfile)
    print(f"  \includegraphics[width=0.75\\textwidth]{{{base}.png}}",
          file=outfile)
    print(f"  \includegraphics[width=0.75\\textwidth]{{{base}_img0.png}}",
          file=outfile)
    print(f"  \includegraphics[width=0.75\\textwidth]{{{base}_img1.png}}",
          file=outfile)
    print(f"  \caption{{{caption}}}", file=outfile)
    print(f"  \label{{fig:{label}}}", file=outfile)
    print(f"\end{{figure*}}", file=outfile)


if len(sys.argv) < 5:
    print(f"USAGE: {sys.argv[0]} IMG SOM MAP TRANSFORM")

imgs = pu.ImageReader(sys.argv[1])
som = pu.SOM(sys.argv[2])
mapping = pu.Mapping(sys.argv[3])
trans = pu.Transform(sys.argv[4])
somset = pu.SOMSet(som, mapping, trans)

path = pu.PathHelper("Inspection")
outfile = open("latex_imgs.tex", "w")

### SOM 2D histogram ###
som_counts(somset, True)
plt.savefig(f"som_stats.png")
plt.clf()
caption = f"The total number of images within the {imgs.data.shape[0]} input images mapped to each neuron in the SOM."
latex_figure("som_stats.png", caption, "som_stats", outfile)
print("", file=outfile)
Exemple #6
0
        axes[2].imshow(somset.som[bmu_idx][0])
        axes[2].set_title(f"Best-matching neuron: {bmu_idx}", fontsize=12)
        # axes[2].imshow(somset.som[bmu_idx][1])

    if df is not None:
        fig.suptitle(df.loc[idx]["Component_name"], fontsize=16)


if len(sys.argv) != 3:
    print("USAGE: {} sample_file som_file".format(sys.argv[0]))
    sys.exit(-1)

sample_file = sys.argv[1]
df = pd.read_csv(sample_file)

imbin = pu.ImageReader(sample_file.replace(".csv", "_imgs.bin"))

som_file = sys.argv[2]
som = pu.SOM(som_file)

map_file = som_file.replace(".bin", "_Similarity.bin")
mapping = pu.Mapping(map_file)

trans_file = som_file.replace(".bin", "_Transform.bin")
transform = pu.Transform(trans_file)

somset = pu.SOMSet(som=som, mapping=mapping, transform=transform)

### Update the component catalogue ###

bmus = mapping.bmu()
Exemple #7
0
def source_from_catalogue(
    src_cat,
    radio_cat,
    imbin_path,
    som=None,
    show_nearby=False,
    show_bmu=False,
    idx=None,
):
    if idx is None:
        # idx = np.random.randint(len(src_cat))
        idx = src_cat[src_cat.N_components > 1].sample(1).index[0]
    src = src_cat.loc[idx]

    comp_names = src.Component_names.split(";")
    tile_id = radio_cat[radio_cat.Component_name == comp_names[0]].Tile.iloc[0]
    radio_tile = radio_cat[radio_cat.Tile == tile_id].reset_index(drop=True)
    comps = radio_tile[radio_tile["Component_name"].isin(comp_names)]

    radio_ra = np.array(src.RA_components.split(";"), dtype=float)
    radio_dec = np.array(src.DEC_components.split(";"), dtype=float)
    radio_pos = SkyCoord(radio_ra, radio_dec, unit=u.deg)

    if src.N_host_candidates > 0:
        ir_ra = np.array(src.RA_host_candidates.split(";"), dtype=float)
        ir_dec = np.array(src.DEC_host_candidates.split(";"), dtype=float)
        ir_pos = SkyCoord(ir_ra, ir_dec, unit=u.deg)

    img_file, map_file, trans_file = binary_names(tile_id, imbin_path)
    imgs = pu.ImageReader(img_file)
    mapping = pu.Mapping(map_file)
    transform = pu.Transform(trans_file)

    if som is not None:
        somset = pu.SOMSet(som, mapping, transform)

    img_idx = comps.index[0]
    comp = comps.loc[img_idx]
    npix = imgs.data.shape[-1]
    wcs = create_wcs(comp.RA, comp.DEC, npix, 3 * u.arcmin / npix)

    if show_bmu:
        plot_image(
            imgs,
            img_idx,
            somset=somset,
            wcs=wcs,
            transform_neuron=True,
            show_bmu=show_bmu,
        )
    else:
        plot_image(imgs, img_idx, wcs=wcs, show_bmu=False)
    axes = plt.gcf().axes

    if show_nearby:
        posn = SkyCoord(comp.RA, comp.DEC, unit=u.deg)
        coords = SkyCoord(radio_cat.RA, radio_cat.DEC, unit=u.deg)
        nearby = coords[posn.separation(coords) < 1.5 * u.arcmin]
        for ax in plt.gcf().axes:
            ax.scatter(
                nearby.RA, nearby.DEC, c="w", transform=ax.get_transform("world")
            )

    # for ax in plt.gcf().axes:
    #     ax.scatter(comps.RA, comps.DEC, c="r", transform=ax.get_transform("world"))

    axes[0].scatter(
        radio_pos.ra, radio_pos.dec, c="r", transform=axes[0].get_transform("world")
    )
    if src.N_host_candidates > 0:
        axes[1].scatter(
            ir_pos.ra, ir_pos.dec, c="w", transform=axes[1].get_transform("world")
        )

    plt.suptitle(f"Source ID: {idx}")
                                           pandas=True)

# Sample of pairs
sample_path = "/home/adrian/CIRADA/Sample"
sample_file = "Pairs_uniformNNdist_5asecbins_minSN10_cleansep.csv"
radio_cat = vdl.load_vlass_catalogue(
    os.path.join(sample_path, sample_file),
    pandas=True,
    complex=False,
)

ir_file = "Pairs_uniformNNdist_5asecbins_minSN10_cleansep_IR.fits"
ir_cat = load_unwise(ir_file, path=sample_path)

imbin_file = "IMG_uniformNNdist_5asecbins_minSN10_cleansep_compfilt_w7525.bin"
imgs = pu.ImageReader(os.path.join(sample_path, imbin_file))

# SOM Input Info
som_path = os.path.join("/home/adrian/CIRADA/SOM", "Pairs",
                        "ComponentFiltered", "w7525")
som_file = os.path.join(som_path, "SOM_B3_h10_w10_vlass.bin")

map_file = "MAP_uniformNNdist_5asecbins_minSN10_cleansep_compfilt_w7525_ComponentFiltered_10x10.bin"
trans_file = map_file.replace("MAP", "TRANSFORM")
somset = pu.SOMSet(
    som_file,
    os.path.join(sample_path, map_file),
    os.path.join(sample_path, trans_file),
)
somset.som.bmu_mask = None
Exemple #9
0
        default="Plots",
        type=str,
    )

    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = parse_args()

    # Initialize the sample DataFrame, ImageReader, and SOM
    # files = set_filenames(args.som_file, args.map_file, args.trans_file, args.outbase)

    # df = pd.read_csv(args.sample_file)
    imgs = pu.ImageReader(args.imbin_file)
    somset = init_somset(args.som_file, args.map_file, args.trans_file)
    path = pu.PathHelper(args.outpath)

    # Only keep the records that preprocessed successfully
    # df = df.loc[imgs.records].reset_index(drop=True)
    # df = update_component_catalogue(df, somset)

    som_counts(somset, show_counts=True)
    plt.savefig(f"{path}/bmu_frequency.png")
    # plot_image(imgs, df=df, somset=somset, show_bmu=True, apply_transform=True)

    # dist_hist(df, labels=True)
    # plt.savefig(f"{path}/euc_distance_hist.png")

    # dist_hist_2d(df, somset, bins=100, loglog=False)