Exemple #1
0
def patch2im(x_patch, patchsize, stride, padding):
    padtop, padbottom, padleft, padright = padding
    counts = pyinn.col2im(torch.ones_like(x_patch), [patchsize]*2, [stride]*2, [0,0])
    x = pyinn.col2im(x_patch.contiguous(), [patchsize]*2, [stride]*2, [0,0])
    x = x/counts
    x = x[:,:,padtop:x.shape[2]-padbottom, padleft:x.shape[3]-padright]
    return x
Exemple #2
0
 def test_im2col_batch(self):
     src = Variable(torch.randn(4, 8, 7, 7).cuda())
     k = 1
     pad = 0
     s = (1, 1)
     dst = P.im2col(src, k, s, pad)
     back = P.col2im(dst, k, s, pad)
     self.assertEqual((src - back).data.abs().max(), 0)
Exemple #3
0
    def forward(self, x):
        flow = self.block(x)
        x = self.conv1(x)
        x = P.im2col(x, 5, 1, 0)
        flow = P.im2col(flow, 5, 1, 0)
        x = x * flow
        x = P.col2im(x, 5, 1, 0)

        return x
def main():
    window = np.array([150, 150])
    overlap = np.array([75, 75])
    lena = scipy.misc.face(True)
    print lena.shape
    # lena = torch.from_numpy(lena.transpose(2, 0, 1))
    lena = torch.from_numpy(lena).unsqueeze(0)
    lena = Variable(lena.float()).cuda()

    ##################################################
    # Unfold and convolution
    #-------------------------------------------------
    # lena = lena.unfold(0, window[0], window[0] - overlap[0]).unfold(1, window[1], window[0] - overlap[1])
    # s = lena.size()
    # lena = lena.contiguous().view(s[0]*s[1], 1, window[0],window[1])
    # mask = make_identifier_mask(s[0], s[1])
    # mask = torch.from_numpy(mask.transpose(2, 0, 1)).unsqueeze(1)
    # print mask.size()
    # print lena.size()
    # plt.ion()
    # for i in xrange(s[0]*s[1]):
    #     t = F.conv_transpose2d(Variable(mask[i].unsqueeze(0)).float(), Variable(lena[i].unsqueeze(0)).float())
    #     plt.imshow(t.data.squeeze().numpy())
    #     plt.draw()
    #     plt.pause(0.3)

    ##################################################
    # pyinn
    #-------------------------------------------------
    lena = P.im2col(lena, window, window - overlap,
                    [0, 0])  # (768 x 1024) -> (1 x 150 x 150 x 7 x 9)
    s = lena.data.size()
    plot = torchvision.utils.make_grid(lena.squeeze().transpose(
        0, 2).transpose(1, 3).contiguous().view(s[-1] * s[-2], 1, 150,
                                                150).data,
                                       nrow=5,
                                       padding=10,
                                       normalize=True)
    plt.imshow(plot.cpu().numpy().transpose(1, 2, 0))
    plt.show()

    lena = P.col2im(lena, window, window - overlap, [0, 0])  # (1 x 750 x 950)
    plt.imshow(lena.cpu().data.squeeze().numpy())
    plt.show()

    pass
Exemple #5
0
    def forward(self, x1, x2):
        """
        x2 should have better resolution
        :param x1:
        :param x2:
        :return:
        """
        assert x1.is_cuda and x2.is_cuda, "Inputs are not in GPU!"


        debugplot = False
        windows = self.windows
        overlap = self.overlap
        inshape = x1.data.size()

        x = torch.cat([x1, x2], 2).cuda()

        # Unfold
        #-----------
        x.data = x.data.unfold(3, windows[1], overlap[1]).unfold(4, windows[2], overlap[2]).squeeze()
        s = x.data.size()
        x = x.contiguous().view(2, s[1]*s[2], windows[1], windows[2])
        x = x.transpose(0, 1)
        outX = x.contiguous().view(s[1]*s[2], 1, 2, windows[1], windows[2])

        if (debugplot):
            imglist = [outX[i,:,0].squeeze().data.unsqueeze(0) for i in xrange(outX.data.size()[0])]
            plot = torchvision.utils.make_grid(imglist, nrow=25, normalize=True)
            plt.ioff()
            fig = plt.figure(2)
            fig.clear()
            ax = fig.add_subplot(111)
            ax.cla()
            ax.imshow(plot.cpu().numpy().transpose(1, 2, 0))
            plt.show()

        x = self.conv1(outX)
        x = self.fc1(x)

        x = self.conv2(torch.squeeze(x))
        x = self.fc2(x)

        x = self.deconv2(x)
        x = self.fc3(x)

        s2 = x.data.size()
        x = self.deconv1(x.view(s2[0], s2[1], 1, s2[2], s2[3]))

        if (debugplot):
            imglist = [(x[i, 0, 0] + x[i, 0, 1]).view(1, windows[1], windows[2]).data for i in xrange(x.data.size()[0])]
            plot = torchvision.utils.make_grid(imglist, nrow=25, normalize=True)
            plt.ioff()
            fig = plt.figure(2)
            fig.clear()
            ax = fig.add_subplot(111)
            ax.cla()
            ax.imshow(plot.cpu().numpy().transpose(1, 2, 0))
            plt.show()


        V = None
        for i in xrange(s[1]):
            l_v = None
            for j in xrange(s[2]):
                counter = i*s[1] + j
                try:
                    lin = self.linearModules[counter]
                except KeyError:
                    lin = nn.Linear(windows[0], 1)
                    lin.weight.requires_grad = True
                    lin.cuda()
                    self.linearModules.append(lin)
                    pass

                l_x = x[counter]
                l_s = l_x.data.size()
                l_x = l_x.transpose(len(l_s) - 3, len(l_s) - 1).contiguous().view(windows[1]*windows[2], windows[0])
                l_x = lin(l_x)
                l_x = l_x.view(windows[1], windows[2]).contiguous()
                l_x = l_x.unsqueeze(0).unsqueeze(0)

                if (l_v is None):
                    l_v = l_x
                else:
                    l_v = torch.cat([l_v, l_x], 0)

            if (V is None):
                V = l_v
            else:
                V = torch.cat([V, l_v], 1)

        V = V.transpose(0, 3).transpose(1, 2).unsqueeze(0) # (1 x win1 x win2 x p1 x p2)
        if (debugplot):
            plot = torchvision.utils.make_grid(V.squeeze()
                                               .transpose(0, 2).transpose(1, 3)
                                               .contiguous()
                                               .view(s[1]*s[2], 1, windows[1], windows[2]).data
                                               , nrow = 25, padding=10, normalize=False)
            fig = plt.figure(2)
            fig.clear()
            ax = fig.add_subplot(111)
            ax.cla()
            ax.imshow(plot[0].cpu().numpy(), vmin=-10, vmax=10, cmap='Greys_r')
            plt.show()


        outX2 = col2im(V.contiguous() # remember to contiguous() here
                       , windows[1:], windows[1:] - overlap[1:], [0,0])

        if (debugplot):
            fig = plt.figure(2)
            ax = fig.add_subplot(111)
            ax.imshow(outX2.cpu().data.numpy()[0], cmap="Greys_r")
            plt.ioff()
            plt.show()

        x2s = outX2.data.size()
        outX2 = self.linear1(outX2.view(np.prod(x2s), 1))
        outX2 = outX2.view_as(x2)
        x = x2 - outX2
        # x = outX2
        return x