Exemple #1
0
 def batched_feature_padded_same_stride_1_output_1(module):
     i = tf_utils.ndarange([2, 4, 5, 4])
     k = tf_utils.ndarange([2, 4, 4, 1])
     module.conv2d_2453x2441_same_stride_1(i, k)
Exemple #2
0
 def batched_feature_unpadded(module):
     i = tf_utils.ndarange([2, 4, 5, 2])
     k = tf_utils.ndarange([2, 2, 2, 3])
     module.conv2d_2452x2223_valid(i, k)
Exemple #3
0
 def downsample_nearest_neighbor(module):
   img = tf_utils.ndarange([1, 52, 37, 1], dtype=np.int32)
   module.downsample_nearest_neighbor(img)
Exemple #4
0
 def feature_reduce(module):
     i = tf_utils.ndarange([1, 4, 5, 2])
     k = np.ones([3, 2, 2, 1], dtype=np.float32)
     module.conv2d_1452x3221_same(i, k)
Exemple #5
0
 def feature_mix(module):
     i = tf_utils.ndarange([1, 4, 5, 2])
     k = tf_utils.ndarange([1, 1, 2, 2])
     module.conv2d_1452x1122_same(i, k)
Exemple #6
0
 def gather_axis2_batch1(module):
   indices = np.array([[2], [3], [0], [1]], dtype=np.int32)
   params = tf_utils.ndarange([4, 7, 8, 2])
   module.gather_axis2_batch1(params, indices)
Exemple #7
0
 def asymmetric_kernel(module):
     i = tf_utils.ndarange([1, 4, 5, 1])
     k = np.array([[1, 4, 2], [-2, 0, 1]],
                  dtype=np.float32).reshape(2, 3, 1, 1)
     module.conv2d_1451x2311_valid(i, k)
 def einsum_explicit_inner_product(module):
   module.einsum_explicit_inner_product(tf_utils.ndarange([VECTOR_DIM]),
                                        tf_utils.ndarange([VECTOR_DIM]))
Exemple #9
0
        def transposed(module):
            kernel = tf_utils.ndarange([1, 16, 16, 32])
            img = tf_utils.ndarange([1, 1, 32, 32])

            module.conv2d_transpose_same(kernel, img)
Exemple #10
0
 def einsum_sum(module):
   module.einsum_sum(tf_utils.ndarange([VECTOR_DIM]))
Exemple #11
0
 def einsum_mul(module):
   module.einsum_mul(tf_utils.ndarange([VECTOR_DIM]),
                     tf_utils.ndarange([VECTOR_DIM]))
Exemple #12
0
 def einsum_identity(module):
   module.einsum_identity(tf_utils.ndarange([VECTOR_DIM]))
Exemple #13
0
 def einsum_outer_product(module):
   module.einsum_outer_product(tf_utils.ndarange([VECTOR_DIM]),
                               tf_utils.ndarange([VECTOR_DIM]))
Exemple #14
0
 def batched_feature_unpadded_same_stride_2(module):
     i = tf_utils.ndarange([2, 4, 5, 2])
     k = tf_utils.ndarange([2, 4, 2, 3])
     module.conv2d_2452x2423_valid_stride_2(i, k)
Exemple #15
0
 def gather_axis0_scalar(module):
   indices = np.array(2, dtype=np.int32)
   params = tf_utils.ndarange([4, 8])
   module.gather_axis0_scalar(params, indices)
Exemple #16
0
 def einsum_dynamic_dim_sum(module):
   module.einsum_dynamic_dim_sum(
        tf_utils.ndarange([BATCH_DIM, BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
Exemple #17
0
 def gather_axis1_batch0(module):
   indices = np.array([2, 3], dtype=np.int32)
   params = tf_utils.ndarange([4, 7, 8])
   module.gather_axis1_batch0(params, indices)
Exemple #18
0
 def einsum_dynamic_dim_matmul(module):
   module.einsum_dynamic_dim_matmul(
       tf_utils.ndarange([LEFT_DIM, INNER_DIM]),
       tf_utils.ndarange([INNER_DIM, RIGHT_DIM]))
Exemple #19
0
 def id_batch_size_2(module):
     i = tf_utils.ndarange([2, 4, 5, 1])
     k = np.ones([1, 1, 1, 1], dtype=np.float32)
     module.conv2d_2451x1111_valid(i, k)
Exemple #20
0
 def einsum_dynamic_dim_lhs_batch(module):
   module.einsum_dynamic_dim_lhs_batch(
       tf_utils.ndarange([BATCH_DIM, LEFT_DIM, INNER_DIM]),
       tf_utils.ndarange([INNER_DIM, RIGHT_DIM]))
Exemple #21
0
 def batched_padding(module):
     i = tf_utils.ndarange([2, 4, 5, 1])
     k = np.array([[1, 4, 2], [-2, 0, 1]],
                  dtype=np.float32).reshape(2, 3, 1, 1)
     module.conv2d_2451x2311_same(i, k)
Exemple #22
0
 def einsum_dynamic_rank_split_heads(module):
   module.einsum_dynamic_rank_split_heads(
       tf_utils.ndarange([BATCH_DIM, BATCH_DIM, 8, 6]),
       tf_utils.ndarange([12, 6, 4]))
Exemple #23
0
 def feature_inflate(module):
     i = tf_utils.ndarange([1, 4, 5, 1])
     k = tf_utils.ndarange([1, 1, 1, 2])
     module.conv2d_1451x1112_same(i, k)
Exemple #24
0
 def einsum_dynamic_dim_identity(module):
   module.einsum_dynamic_dim_identity(
       tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
Exemple #25
0
 def feature_padded(module):
     i = tf_utils.ndarange([1, 4, 5, 2])
     k = tf_utils.ndarange([2, 2, 2, 3])
     module.conv2d_1452x2223_same(i, k)
Exemple #26
0
 def einsum_dynamic_rank_identity(module):
   module.einsum_dynamic_rank_identity(
       tf_utils.ndarange([BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
Exemple #27
0
 def predict(module):
     inputs = tf_utils.ndarange(INPUT_SHAPE)
     module.predict(inputs)
Exemple #28
0
 def predict(module):
     inputs = tf_utils.ndarange(INPUT_SHAPE)
     module.predict(inputs, rtol=1e-5, atol=1e-5)
Exemple #29
0
 def upsample_nearest_neighbor(module):
   img = tf_utils.ndarange([1, 8, 7, 1], dtype=np.int32)
   module.upsample_nearest_neighbor(img)
Exemple #30
0
 def slice_first_element_with_from_tensor_high_rank(module):
   module.slice_first_element_with_from_tensor_high_rank(
       tf_utils.ndarange([STATIC_SIZE, STATIC_SIZE]))