Exemple #1
0
def tunning_function(name):
    """Function to test the tuning of the models."""
    knowledge_graph = KnowledgeGraph(dataset="freebase15k")
    knowledge_graph.prepare_data()

    # getting the customized configurations from the command-line arguments.
    args = KGETuneArgParser().get_args([])

    # initializing bayesian optimizer and prepare data.
    args.debug = True
    args.model = name

    bays_opt = BaysOptimizer(args=args)
    bays_opt.config_local.test_num = 10

    # perform the golden hyperparameter tuning.
    bays_opt.optimize()

    assert bays_opt.return_best() is not None
Exemple #2
0
def test_return_empty_before_optimization(mocked_fmin):
    """Function to test the tuning of the models."""
    knowledge_graph = KnowledgeGraph(dataset="freebase15k")
    knowledge_graph.prepare_data()

    # getting the customized configurations from the command-line arguments.
    args = KGETuneArgParser().get_args([])

    # initializing bayesian optimizer and prepare data.
    args.debug = True
    args.model = 'analogy'

    bays_opt = BaysOptimizer(args=args)
    bays_opt.config_local.test_num = 10

    with pytest.raises(Exception) as e:
        bays_opt.return_best()

    assert mocked_fmin.called is False
    assert e.value.args[0] == 'Cannot find golden setting. Has optimize() been called?'