def main(argv): opts = docopt.docopt(__doc__, argv) if opts['-X']: K = 27 if opts['-K']: K = int(opts['-K']) buildIndex(K, opts['<input>'], opts['<alleles>']) return idx = index(opts['<alleles>']) for inp in opts['<input>']: with container(inp, 'r') as z: K0 = z.meta['K'] if K0 != idx.K: print >> sys.stderr, 'Input "%d" has different k to index' % ( inp, ) sys.exit(1) xs = readKmers(z) cs = [idx.lens[i] for i in xrange(len(idx.lens))] for x in xs: for j in idx[x]: cs[j] -= 1 for j in xrange(len(idx.lens)): assert cs[j] >= 0 if cs[j] == 0: print '%s\t%d\t%s' % (inp, j, idx.names[j])
def __init__(self, z): self.K = z.meta['K'] S = array.array('L', readKmers(z)) self.S = sparse(2*self.K, S) n = z.meta['T'] self.T = array.array('I', read32(z, 'offsets', n)) n = z.meta['U'] self.U = array.array('H', read16(z, 'postings', n)) n = z.meta['lens'] self.lens = array.array('I', read32(z, 'lens', n)) self.names = z.meta['names']
def main(argv): opts = docopt.docopt(__doc__, argv) with container(opts['<ref>'], 'r') as z: K = z.meta['K'] xs = array.array('L', readKmers(z)) Z = len(xs) with container(opts['<input>'], 'r') as z0: K0 = z0.meta['K'] if K0 != K: print >> sys.stderr, "mismatched K (%d)" % (K0, ) sys.exit(1) with container(opts['<output>'], 'w') as z: if 'counts' in z0.meta: ys = readKmersAndCounts(z0) writeKmersAndCounts(K, project2(xs, ys), z) else: ys = readKmers(z0) writeKmers(K, project1(xs, ys), z)
def main(argv): opts = docopt.docopt(__doc__, argv) L0 = None if opts['-l']: L0 = int(opts['-l']) for inp in opts['<input>']: with container(inp, 'r') as z: K = z.meta['K'] L = L0 if L is None: L = 2*K xs = array.array('L', readKmers(z)) S = sparse(2*K, xs) seen = bitvec(S.count()) for i in xrange(S.count()): if seen[i]: continue x = S.select(i) xb = rc(K, x) xp = succ(K, S, xb) if xp == 1: # x isn't the start of a contig continue pth = [x] seen[i] = 1 xn = succ(K, S, x) while len(xn) == 1: if seen[xn[0]] == 1: break x = S.select(xn[0]) pth.append(x) seen[xn[0]] = 1 xb = rc(K, x) j = S.rank(xb) seen[j] = 1 xn = succ(K, S, x) if len(pth)+K-1 < L: continue s = [render(K, pth[0])] for j in xrange(1, len(pth)): s.append("ACGT"[pth[j]&3]) print '>contig_%d\n%s' % (i, ''.join(s))
def main(argv): opts = docopt.docopt(__doc__, argv) fns = opts['<input>'] Z = 1 if opts['-a']: Z = len(fns) p = None if opts['-p'] is not None: p = float(opts['-p']) for i in xrange(Z): with container(fns[i], 'r') as z0: xK = z0.meta['K'] xs = array.array('L', readKmers(z0)) for j in xrange(i + 1, len(fns)): with container(fns[j], 'r') as z1: yK = z1.meta['K'] ys = array.array('L', readKmers(z1)) if xK != yK: print >> sys.stderr, 'mismatched K:', fns[j] sys.exit(1) (isec, union, d) = jaccard(xs, ys) if p is None: print '%s\t%s\t%d\t%d\t%d\t%d\t%f' % ( fns[i], fns[j], len(xs), len(ys), isec, union, d) else: pv = logIx(p, isec + 1, (union - isec) + 1) / math.log(10) q05 = quantBeta(0.05, isec + 1, (union - isec) + 1) q95 = quantBeta(0.95, isec + 1, (union - isec) + 1) print '%s\t%s\t%d\t%d\t%d\t%d\t%f\t-%f\t+%f\t%f' % ( fns[i], fns[j], len(xs), len(ys), isec, union, d, d - q05, q95 - d, pv) sys.stdout.flush()
def main(argv): opts = docopt.docopt(__doc__, argv) nms = [str(i + 1) for i in xrange(len(probesMTB))] probes = probesMTB if opts['-p'] is not None: nms = [] probes = [] bad = False with open(opts['-p']) as f: i = 0 ln = 0 for l in f: ln += 1 if l[0] == '#': continue i += 1 t = l.split() if len(t) == 1: nms.append(str(i)) probes.append(probe(t[0])) elif len(t) == 2: nms.append(t[0]) probes.append(probe(t[1])) else: bad = True print >> sys.stderr, '%s line %d, badly formatted.' % ( opts['-p'], i) if bad: sys.exit(1) for inp in opts['<input>']: with container(inp, 'r') as z: K = z.meta['K'] xs = readKmers(z) xs = sparse(2 * K, array.array('L', xs)) res = [] for i in xrange(len(probes)): if findProbe(probes[i], K, xs): res.append('1') else: res.append('0') if opts['-l']: for i in xrange(len(nms)): print '%s\t%s\t%s' % (inp, nms[i], res[i]) else: print inp + '\t' + ''.join(res)
def main(argv): opts = docopt.docopt(__doc__, argv) inp = opts['<input>'] with container(inp, 'r') as z: K = z.meta['K'] if 'kmers' not in z.meta: print >> sys.stderr, 'cannot dump "%s" as it contains no k-mers' % ( inp, ) return if 'counts' in z.meta: xs = readKmersAndCounts(z) for (x, c) in xs: print '%s\t%d' % (render(K, x), c) else: xs = readKmers(z) for x in xs: print render(K, x)
def main(argv): opts = docopt.docopt(__doc__, argv) if opts['-X']: K = 27 S = [] N = 0 qacgt = [0, 0, 0, 0] for fn in opts['<input>']: with open(fn) as f: for (nm, seq) in readFasta(f): if len(seq) < K: continue for (x,p) in kmersWithPos(K, seq, True): S.append(x) qacgt[x&3] += 1 N += 1 S.sort() qacgt = [float(c)/float(N) for c in qacgt] S = sparse(2*K, array.array('L', uniq(S))) lens = array.array('I', []) nms = [] seqs = [] n = 0 tmp = [[] for i in xrange(S.count())] for fn in opts['<input>']: with open(fn) as f: for (nm, seq) in readFasta(f): if len(seq) < K: print >> sys.stderr, "warning: `%s' skipped" % (nm,) continue nms.append(nm) seqs.append(seq) lens.append(len(seq)) for (x,p) in kmersWithPos(K, seq, True): r = S.rank(x) tmp[r].append((n, p)) n += 1 T = array.array('I', []) U = array.array('I', []) V = array.array('i', []) t = 0 for nps in tmp: T.append(t) t += len(nps) for (n, p) in nps: U.append(n) V.append(p) T.append(t) del tmp gfn = opts['<genes>'] with container(gfn, 'w') as z: z.meta['K'] = K z.meta['S'] = S.count() write64(z, S.xs, 'S') z.meta['T'] = len(T) write64(z, T, 'T') z.meta['U'] = len(U) write32(z, U, 'U') z.meta['V'] = len(V) write32s(z, V, 'V') z.meta['lens'] = lens z.meta['qacgt'] = qacgt z.meta['nms'] = nms z.meta['seqs'] = seqs return print >> sys.stderr, "loading..." gfn = opts['<genes>'] with container(gfn, 'r') as z: K = z.meta['K'] S = array.array('L', read64(z, 'S', z.meta['S'])) S = sparse(2*K, S) T = array.array('L', read64(z, 'T', z.meta['T'])) U = array.array('I', read32(z, 'U', z.meta['U'])) V = array.array('i', read32s(z, 'V', z.meta['V'])) lens = z.meta['lens'] qacgt = z.meta['qacgt'] nms = z.meta['nms'] seqs = z.meta['seqs'] print >> sys.stderr, "done." for fn in opts['<input>']: L = array.array('B', [0 for i in xrange(S.count())]) Y = array.array('L', [0 for i in xrange(S.count())]) with container(fn, 'r') as z: sacgt = z.meta['acgt'] xs = readKmers(z) X = array.array('L', xs) M = len(X) resolveAll(K, S, L, Y, X) X = sparse(2*K, X) g = sum([qp*sp for (qp, sp) in zip(qacgt, sacgt)]) print >> sys.stderr, "g =", g nm = [null(g, M, j) for j in range(0, K+1)] # counts for computing distribution of prefix lengths cnt = [[0 for j in xrange(K+1)] for i in xrange(len(nms))] # the k-mers that we pulled by lcp from the sample # for each position of each query. P = [array.array('L', [0 for j in xrange(lens[i] - K + 1)]) for i in xrange(len(lens))] # the length of the lcp for each position of each query. Q = [array.array('B', [0 for j in xrange(lens[i] - K + 1)]) for i in xrange(len(lens))] for i in xrange(S.count()): for j in xrange(T[i], T[i+1]): n = U[j] p = V[j] y = Y[i] l = L[i] cnt[n][l] += 1 if p > 0: p -= 1 else: p = -(p + 1) y = rc(K, y) if l > Q[n][p]: Q[n][p] = l P[n][p] = y for i in xrange(len(nms)): # iterate over the queries qc = math.log(K*0.05/float(lens[i] - K + 1)/2) # Link up "de Bruijn" sequences m = (1 << (2*K - 2)) - 1 py = 0 u = unionfind() for j in xrange(lens[i] - K + 1): x = P[i][j] y = x >> 2 if j > 0: d = ham(py, y) if d == 0: u.union(j-1, j) py = x & m # Gather up the de Bruin fragments udx = {} for j in xrange(lens[i] - K + 1): v = u.find(j) if v not in udx: udx[v] = [] udx[v].append(j) # Index the left hand k-mers idxLhs = {} kx = [] for (jx, js) in udx.iteritems(): q = 0 for j in js: q += math.log1p(-nm[Q[i][j]]) if q > math.log(0.05/len(js)): continue kx.append((-len(js), jx)) idxLhs[P[i][js[0]]] = jx kx.sort() # Attempt to link up fragments links = {} for (_, jx) in kx: jR = udx[jx][-1] if jR == lens[i] - K + 1: continue x = P[i][jR] xs = [] lnk = None for k in xrange(100): ys = succ(K, X, x) if len(ys) != 1: break x = ys[0] if x in idxLhs: lnk = idxLhs[x] break xs.append(x) if lnk is not None: links[jx] = xs u.union(jx, lnk) # Gather up the linked fragments vdx = {} for j in [jx for (_, jx) in kx]: v = u.find(j) if v not in vdx: vdx[v] = [] vdx[v].append(j) res = [] for (jxx, jxs) in vdx.iteritems(): # Order the gragments by start position fs = [(udx[jx][0], jx) for jx in jxs] fs.sort() sxs = [] for fj in xrange(len(fs)): (_, jx) = fs[fj] beg = udx[jx][0] end = udx[jx][-1] + 1 if fj == 0: for j in xrange(beg): sxs.append((0, 0)) xs = links.get(jx, None) for j in xrange(beg, end): x = P[i][j] l = Q[i][j] sxs.append((x, l)) if xs: for x in xs: sxs.append((x, 27)) else: if fj < len(fs) - 1: nxt = fs[fj+1][0] else: nxt = lens[i] - K + 1 for j in xrange(end, nxt): sxs.append((0, 0)) seq = [[0, 0, 0, 0] for j in xrange(len(sxs) + K - 1)] for j in xrange(len(sxs)): (x, l) = sxs[j] p = math.log1p(-nm[l]) for k in xrange(K): seq[j + K - k - 1][x&3] += p x >>= 2 ax = [] p = None inf = False for j in xrange(len(seq)): b = 0 for k in xrange(4): if seq[j][k] < qc: b |= 1 << k ax.append(fasta(b)) ssj = sum(seq[j]) if p is None: p = ssj else: p = logAdd(p, ssj) if ssj > -1e-300: inf = True dst = counts2cdf(cnt[i]) (_, kd) = ksDistance2(dst, nm) df = math.ceil(len(seq)/float(K)) if inf: q = 1e300 pv = 0.0 else: q = 2*math.exp(p) pv = chi2(df, q) res.append((pv, q, kd, ''.join(ax))) if len(res) == 0: continue res.sort() if res[0][0] < -2: #ed = lev(seqs[i], res[0][2]) ed = 0 pv = res[0][0]/math.log(10) c2 = res[0][1] kd = res[0][2] a = res[0][3] print '%d\t%d\t%d\t%g\t%g\t%g\t%s\t%s' % (i, lens[i], len(a), kd, c2, pv, nms[i], a) sys.stdout.flush()