Exemple #1
0
def build_made(
        batch_x: Tensor = None,
        batch_y: Tensor = None,
        z_score_x: bool = True,
        z_score_y: bool = True,
        hidden_features: int = 50,
        num_blocks: int = 5,
        num_mixture_components: int = 10,
        embedding_net: nn.Module = nn.Identity(),
) -> nn.Module:
    """Builds MADE p(x|y).

    Args:
        batch_x: Batch of xs, used to infer dimensionality and (optional) z-scoring.
        batch_y: Batch of ys, used to infer dimensionality and (optional) z-scoring.
        z_score_x: Whether to z-score xs passing into the network.
        z_score_y: Whether to z-score ys passing into the network.
        hidden_features: Number of hidden features.
        num_blocks: Number of MADE blocks.
        num_mixture_components: Number of mixture components.
        embedding_net: Optional embedding network for y.

    Returns:
        Neural network.
    """
    x_numel = batch_x[0].numel()
    y_numel = batch_y[0].numel()

    if x_numel == 1:
        warn(
            f"In one-dimensional output space, this flow is limited to Gaussians"
        )

    transform = transforms.IdentityTransform()

    if z_score_x:
        transform_zx = standardizing_transform(batch_x)
        transform = transforms.CompositeTransform([transform_zx, transform])

    if z_score_y:
        embedding_net = nn.Sequential(standardizing_net(batch_y),
                                      embedding_net)

    distribution = distributions_.MADEMoG(
        features=x_numel,
        hidden_features=hidden_features,
        context_features=y_numel,
        num_blocks=num_blocks,
        num_mixture_components=num_mixture_components,
        use_residual_blocks=True,
        random_mask=False,
        activation=relu,
        dropout_probability=0.0,
        use_batch_norm=False,
        custom_initialization=True,
    )

    neural_net = flows.Flow(transform, distribution, embedding_net)

    return neural_net
Exemple #2
0
def posterior_nn(
    model: str,
    prior: torch.distributions.Distribution,
    context: torch.Tensor,
    embedding: Optional[torch.nn.Module] = None,
    hidden_features: int = 50,
    mdn_num_components: int = 20,
    made_num_mixture_components: int = 10,
    made_num_blocks: int = 4,
    flow_num_transforms: int = 5,
) -> torch.nn.Module:
    """Neural posterior density estimator

    Args:
        model: Model, one of maf / mdn / made / nsf
        prior: Prior distribution
        context: Observation
        embedding: Embedding network
        hidden_features: For all, number of hidden features
        mdn_num_components: For MDNs only, number of components
        made_num_mixture_components: For MADEs only, number of mixture components
        made_num_blocks: For MADEs only, number of blocks
        flow_num_transforms: For flows only, number of transforms

    Returns:
        Neural network
    """
    mean, std = (prior.mean, prior.stddev)
    standardizing_transform = transforms.AffineTransform(
        shift=-mean / std, scale=1 / std
    )

    parameter_dim = prior.sample([1]).shape[1]

    context = utils.torchutils.atleast_2d(context)
    observation_dim = torch.tensor([context.shape[1:]])

    if model == "mdn":
        neural_net = MultivariateGaussianMDN(
            features=parameter_dim,
            context_features=observation_dim,
            hidden_features=hidden_features,
            hidden_net=nn.Sequential(
                nn.Linear(observation_dim, hidden_features),
                nn.ReLU(),
                nn.Dropout(p=0.0),
                nn.Linear(hidden_features, hidden_features),
                nn.ReLU(),
                nn.Linear(hidden_features, hidden_features),
                nn.ReLU(),
            ),
            num_components=mdn_num_components,
            custom_initialization=True,
        )

    elif model == "made":
        transform = standardizing_transform
        distribution = distributions_.MADEMoG(
            features=parameter_dim,
            hidden_features=hidden_features,
            context_features=observation_dim,
            num_blocks=made_num_blocks,
            num_mixture_components=made_num_mixture_components,
            use_residual_blocks=True,
            random_mask=False,
            activation=torch.relu,
            dropout_probability=0.0,
            use_batch_norm=False,
            custom_initialization=True,
        )
        neural_net = flows.Flow(transform, distribution, embedding)

    elif model == "maf":
        transform = transforms.CompositeTransform(
            [
                transforms.CompositeTransform(
                    [
                        transforms.MaskedAffineAutoregressiveTransform(
                            features=parameter_dim,
                            hidden_features=hidden_features,
                            context_features=observation_dim,
                            num_blocks=2,
                            use_residual_blocks=False,
                            random_mask=False,
                            activation=torch.tanh,
                            dropout_probability=0.0,
                            use_batch_norm=True,
                        ),
                        transforms.RandomPermutation(features=parameter_dim),
                    ]
                )
                for _ in range(flow_num_transforms)
            ]
        )

        transform = transforms.CompositeTransform([standardizing_transform, transform,])

        distribution = distributions_.StandardNormal((parameter_dim,))
        neural_net = flows.Flow(transform, distribution, embedding)

    elif model == "nsf":
        transform = transforms.CompositeTransform(
            [
                transforms.CompositeTransform(
                    [
                        transforms.PiecewiseRationalQuadraticCouplingTransform(
                            mask=create_alternating_binary_mask(
                                features=parameter_dim, even=(i % 2 == 0)
                            ),
                            transform_net_create_fn=lambda in_features, out_features: nets.ResidualNet(
                                in_features=in_features,
                                out_features=out_features,
                                hidden_features=hidden_features,
                                context_features=observation_dim,
                                num_blocks=2,
                                activation=torch.relu,
                                dropout_probability=0.0,
                                use_batch_norm=False,
                            ),
                            num_bins=10,
                            tails="linear",
                            tail_bound=3.0,
                            apply_unconditional_transform=False,
                        ),
                        transforms.LULinear(parameter_dim, identity_init=True),
                    ]
                )
                for i in range(flow_num_transforms)
            ]
        )

        transform = transforms.CompositeTransform([standardizing_transform, transform,])

        distribution = distributions_.StandardNormal((parameter_dim,))
        neural_net = flows.Flow(transform, distribution, embedding)

    else:
        raise ValueError

    return neural_net
Exemple #3
0
Fichier : flow.py Projet : bkmi/sbi
def build_made(
        batch_x: Tensor,
        batch_y: Tensor,
        z_score_x: Optional[str] = "independent",
        z_score_y: Optional[str] = "independent",
        hidden_features: int = 50,
        num_mixture_components: int = 10,
        embedding_net: nn.Module = nn.Identity(),
        **kwargs,
) -> nn.Module:
    """Builds MADE p(x|y).

    Args:
        batch_x: Batch of xs, used to infer dimensionality and (optional) z-scoring.
        batch_y: Batch of ys, used to infer dimensionality and (optional) z-scoring.
        z_score_x: Whether to z-score xs passing into the network, can be one of:
            - `none`, or None: do not z-score.
            - `independent`: z-score each dimension independently.
            - `structured`: treat dimensions as related, therefore compute mean and std
            over the entire batch, instead of per-dimension. Should be used when each
            sample is, for example, a time series or an image.
        z_score_y: Whether to z-score ys passing into the network, same options as
            z_score_x.
        hidden_features: Number of hidden features.
        num_mixture_components: Number of mixture components.
        embedding_net: Optional embedding network for y.
        kwargs: Additional arguments that are passed by the build function but are not
            relevant for mades and are therefore ignored.

    Returns:
        Neural network.
    """
    x_numel = batch_x[0].numel()
    # Infer the output dimensionality of the embedding_net by making a forward pass.
    check_data_device(batch_x, batch_y)
    check_embedding_net_device(embedding_net=embedding_net, datum=batch_y)
    y_numel = embedding_net(batch_y[:1]).numel()

    if x_numel == 1:
        warn(
            "In one-dimensional output space, this flow is limited to Gaussians"
        )

    transform = transforms.IdentityTransform()

    z_score_x_bool, structured_x = z_score_parser(z_score_x)
    if z_score_x_bool:
        transform_zx = standardizing_transform(batch_x, structured_x)
        transform = transforms.CompositeTransform([transform_zx, transform])

    z_score_y_bool, structured_y = z_score_parser(z_score_y)
    if z_score_y_bool:
        embedding_net = nn.Sequential(standardizing_net(batch_y, structured_y),
                                      embedding_net)

    distribution = distributions_.MADEMoG(
        features=x_numel,
        hidden_features=hidden_features,
        context_features=y_numel,
        num_blocks=5,
        num_mixture_components=num_mixture_components,
        use_residual_blocks=True,
        random_mask=False,
        activation=relu,
        dropout_probability=0.0,
        use_batch_norm=False,
        custom_initialization=True,
    )

    neural_net = flows.Flow(transform, distribution, embedding_net)

    return neural_net