Exemple #1
0
def custom_colormap(name):
    """ returns one of the custom colormaps as a colormap object if input is string.
    If input is a colormap, simply returns the object right back.

    >>> type(custom_colormap('rainbow_black_violet'))
    <class 'mpltools.color.LinearColormap'>

    >>> type(custom_colormap('gist_rainbow_r'))
    <class 'matplotlib.colors.LinearSegmentedColormap'>

    >>> type(custom_colormap('Greens'))
    <class 'matplotlib.colors.LinearSegmentedColormap'>

    >>> custom_colormap('not_here')
    Traceback (most recent call last):
    Exception: Colormap not present in custom colormaps: not_here

    """

    if isinstance(name, C.LinearSegmentedColormap):
        return name

    if name in [str(x) for x in P.colormaps()]:
        return P.cm.get_cmap(name)

    if name in CUSTOM_LINEAR_SEGMENTED_COLORMAPS:
        return quick_colormap(CUSTOM_LINEAR_SEGMENTED_COLORMAPS[name], name)

    if name in CUSTOM_CONSTRUCTED_COLORMAPS:
        return custom_constructed_colormaps(name)

    raise Exception("Colormap not present in custom colormaps: " + name)
Exemple #2
0
 def __init__(self, app):
     self.dialog = QWidget.__init__(self)
     self.app = app
     
     # Set up the user interface from Designer.
     self.ui = Ui_ranges()
     self.ui.setupUi(self)
     
     self.cmapList = [colormap for colormap in py.colormaps() if not colormap.endswith("_r")]
     self.ui.colorMap.addItems(self.cmapList)
     self.ui.colorMap.setCurrentIndex(60)
     
     # flags
     self.f_mapOpen  = False
     self.f_spOpen   = False
     self.f_fileOpen = False
     self.f_firstOpening = False
     self.f_cacheRecovered = False
     
     self.measParams = {}
     self.plotParams = {}
     self.plotSpPos = None
     self.spMapPos = None
     self.spVerticalBarCounter = 0
     self.spWaveLimits = []
     
     
     # Connect up the buttons.
     self.ui.squareMeas.toggled.connect(self.squareMeasClicked)
     self.ui.xMeasMin.valueChanged.connect(self.measRangeUpdate)
     self.ui.xMeasMax.valueChanged.connect(self.measRangeUpdate)
     self.ui.xMeasStep.valueChanged.connect(self.measRangeUpdate)
     self.ui.colorPlotFullscale.clicked.connect(self.colorPlotFullscale)
     self.ui.xPlotFullscale.clicked.connect(self.xPlotFullscale)
     self.ui.yPlotFullscale.clicked.connect(self.yPlotFullscale)
     self.ui.wavePlotFullscale.clicked.connect(self.wavePlotFullscale)
     self.ui.plotUpdate.clicked.connect(self.update)
     self.ui.selectFileButton.clicked.connect(self.selectFile)
     
     QTimer.singleShot(100, self.selectFile)  # select file at start
"""
Example script computing the battery size as a function of the 
self-sufficiency and self-consumption rates

Created on Fri Mar  4 01:27:31 2016

@author: Sylvain Quoilin (JRC)
"""

from __future__ import division
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pylab import colormaps
cmaps = colormaps()
from scipy.optimize import fsolve
from SC_functions import fSSR


# Version of the function with only r_bat as input variable (r_PV is provided as a parameter) for fsolve:
def SSR_fsolve(r_bat, *param):
    a, r_PV, SSR = param
    if r_PV == 0:
        return r_bat
    else:
        return SSR - fSSR(r_PV, r_bat, a)


# test the coefficients of the 16 parameters function:
coef = [
Exemple #4
0
def BenchmarkSummaryFigure(models,variables,data,figname,vcolor=None,rel_only=False):
    """Creates a summary figure for the benchmark results contained in the
    data array.

    Parameters
    ----------
    models : list
        a list of the model names
    variables : list
        a list of the variable names
    data : numpy.ndarray or numpy.ma.ndarray
        data scores whose shape is ( len(variables), len(models) )
    figname : str
        the full path of the output file to write
    vcolor : list, optional
        an array parallel to the variables array containing background
        colors for the labels to be displayed on the y-axis.
    """
    from mpl_toolkits.axes_grid1 import make_axes_locatable

    # data checks
    assert  type(models)    is type(list())
    assert  type(variables) is type(list())
    assert (type(data)      is type(np   .empty(1)) or
            type(data)      is type(np.ma.empty(1)))
    assert data.shape[0] == len(variables)
    assert data.shape[1] == len(models   )
    assert  type(figname)   is type("")
    if vcolor is not None:
        assert type(vcolor) is type(list())
        assert len(vcolor) == len(variables)
    rel_cmap = "PuOr"
        
    # define some parameters
    nmodels    = len(models)
    nvariables = len(variables)
    maxV       = max([len(v) for v in variables])
    maxM       = max([len(m) for m in models])
    wpchar     = 0.15
    wpcell     = 0.19
    hpcell     = 0.25
    w          = maxV*wpchar + max(4,nmodels)*wpcell
    if not rel_only: w += (max(4,nmodels)+1)*wpcell
    h          = maxM*wpchar + nvariables*hpcell + 1.0

    bad        = 0.5
    if "stoplight" not in plt.colormaps(): RegisterCustomColormaps()

    # plot the variable scores
    if rel_only:
        fig,ax = plt.subplots(figsize=(w,h),ncols=1,tight_layout=True)
        ax     = [ax]
    else:
        fig,ax = plt.subplots(figsize=(w,h),ncols=2,tight_layout=True)

    # absolute score
    if not rel_only:
        cmap   = plt.get_cmap('stoplight')
        cmap.set_bad('k',bad)
        qc     = ax[0].pcolormesh(np.ma.masked_invalid(data[::-1,:]),cmap=cmap,vmin=0,vmax=1,linewidth=0)
        div    = make_axes_locatable(ax[0])
        fig.colorbar(qc,
                     ticks=(0,0.25,0.5,0.75,1.0),
                     format="%g",
                     cax=div.append_axes("bottom", size="5%", pad=0.05),
                     orientation="horizontal",
                     label="Absolute Score")
        plt.tick_params(which='both', length=0)
        ax[0].xaxis.tick_top()
        ax[0].set_xticks     (np.arange(nmodels   )+0.5)
        ax[0].set_xticklabels(models,rotation=90)
        ax[0].set_yticks     (np.arange(nvariables)+0.5)
        ax[0].set_yticklabels(variables[::-1])
        ax[0].tick_params('both',length=0,width=0,which='major')
        ax[0].tick_params(axis='y',pad=10)
        ax[0].set_xlim(0,nmodels)
        ax[0].set_ylim(0,nvariables)
        if vcolor is not None:
            for i,t in enumerate(ax[0].yaxis.get_ticklabels()):
                t.set_backgroundcolor(vcolor[::-1][i])

    # relative score
    i = 0 if rel_only else 1
    np.seterr(invalid='ignore',under='ignore')
    data = np.ma.masked_invalid(data)
    data.data[data.mask] = 1.
    data = np.ma.masked_values(data,1.)
    mean = data.mean(axis=1)
    std  = data.std (axis=1).clip(0.02)
    np.seterr(invalid='ignore',under='ignore')
    Z    = (data-mean[:,np.newaxis])/std[:,np.newaxis]
    Z    = np.ma.masked_invalid(Z)
    np.seterr(invalid='warn',under='raise')
    cmap = plt.get_cmap(rel_cmap)
    cmap.set_bad('k',bad)
    qc   = ax[i].pcolormesh(Z[::-1],cmap=cmap,vmin=-2,vmax=2,linewidth=0)
    div  = make_axes_locatable(ax[i])
    fig.colorbar(qc,
                 ticks=(-2,-1,0,1,2),
                 format="%+d",
                 cax=div.append_axes("bottom", size="5%", pad=0.05),
                 orientation="horizontal",
                 label="Relative Score")
    plt.tick_params(which='both', length=0)
    ax[i].xaxis.tick_top()
    ax[i].set_xticks(np.arange(nmodels)+0.5)
    ax[i].set_xticklabels(models,rotation=90)
    ax[i].tick_params('both',length=0,width=0,which='major')
    ax[i].set_yticks([])
    ax[i].set_xlim(0,nmodels)
    ax[i].set_ylim(0,nvariables)
    if rel_only:
        ax[i].set_yticks     (np.arange(nvariables)+0.5)
        ax[i].set_yticklabels(variables[::-1])
        if vcolor is not None:
            for i,t in enumerate(ax[i].yaxis.get_ticklabels()):
                t.set_backgroundcolor(vcolor[::-1][i])

    # save figure
    fig.savefig(figname)
Exemple #5
0
        pylab.axis('off')


if __name__ == '__main__':

    dims = numpy.array([50, 50])

    sesName = 'a98nm5'
    grpName = 'movie'
    chan = 1
    movtregion = [10.0, 40.0]
    dt = 0.049584

    mov = getRFMovieStm(dims, movtregion, sesName, grpName, chan)

    pylab.colormaps()

    plotMovieFrames(mov, npic=100, cmap=pylab.cm.gray, tstart=movtregion[0])

    dim_t = 300
    Tsim = 1.2

    nTimeSteps = 300
    stmframes = numpy.r_[numpy.zeros(125),
                         numpy.ones(25),
                         numpy.zeros(25),
                         numpy.ones(25),
                         numpy.zeros(25),
                         numpy.ones(25),
                         numpy.zeros(50)]
    letters = ['A', 'B', 'E']